Lecture Notes in

Computer Science 1951

Frank van der Linden (Ed.)

Software Architectures
for Product Families

International Workshop IW-SAPF-3
Las Palmas de Gran Canaria, Spain, March 2000
Proceedings

€Y Springer

Lecture Notes in Computer Science 1951
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

o AJLb

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan

Paris

Frank van der Linden (Ed.)

Software Architectures
for Product Families

International Workshop IW-SAPFE-3
Las Palmas de Gran Canaria, Spain, March 15-17, 2000
Proceedings

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Frank van der Linden

Philips Medical Systems

Veenpluis 4-6, 5684 PC Best, The Netherlands
E-mail: Frank.van.der.Linden@philips.com

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Software architectures for product families : international workshop
IW SAPF 3, Las Palmas de Gran Canaria, Spain, March 15 - 17, 2000 ;
proceedings / Frank van der Linden (ed.). - Berlin ; Heidelberg ; New
York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ;
Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1951)

ISBN 3-540-41480-0

CR Subject Classification (1998): D.2.11, D.2, K.6

ISSN 0302-9743
ISBN 3-540-41480-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York

a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2000

Printed in Germany

n by PTP-Berlin, Stefan Sossna

P] 06/3142 543210

Preface

This book contains the proceedings of a third workshop on the theme of Software Archi-
tecture for Product Families. The first two workshops were organised by the ESPRIT
project ARES, and were called “Development and Evolution of Software Architectures for
Product Families”. Proceedings of the first workshop, held in November 1996, were only
published electronically at: “http://www.dit.upm.es/~ares/”. Proceedings of the second
workshop, held in February 1998, were published as Springer LNCS 1429.

The ARES project was finished in February 1999. Several partners continued co-
operation in a larger consortium, ITEA project 99005, ESAPS. As such it is part of the
European Eureka X! 2023 programme. The third workshop was organised as part of the
ESAPS project. In order to make the theme of the workshop more generic we decided to
rename it “International Workshop on Software Architectures for Product Families”. As
with the earlier two workshops we managed to bring together people working in the soft-
ware architecture of product families and in software product-line engineering.

Submitted papers were grouped in five sessions. Moreover, we introduced two ses-
sions, one on configuration management and one on evolution, because we felt that dis-
cussion was needed on these topics, but there were no submitted papers for these subjects.
Finally, we introduced a surveys session, giving an overview of the present situation in
Europe, focussed on ESAPS, and in the USA, focussed on the SEI Product Line Systems
Program.

The workshop was chaired by Henk Obbink from Philips Research and by Paul
Clements of the SEI.

The Programme Committee was recruited from the participants of the earlier two work-
shops and from partners within ARES and ESAPS:

Felix Bachmann Philippe Kruchten
Bob Balzer Jeff Maggee

Len Bass Nenad Medvidovic
Jan Bosch Robert Nord

T.W. Cook Dewayne Perry
Juan Carlos Dueifias Juan Antonio de la Puente
Wolfgang Emmerich Alexander Ran
Loe Feijs Clemens Szyperski
Martin Griss Bernhard Thomé
Mehdi Jazayeri Will Tracz

Jean Jourdan David Weiss

Because of our good experiences with the second workshop, this workshop was held at
the same place as the previous one: Las Palmas de Gran Canaria. The local organisation
was again very well done, and in the hands of the same people as the last time: Juan Car-
los Duefias from the Universidad Polytécnica de Madrid and Javier Miranda from the
Universidad de Las Palmas de Gran Canaria. Again it was a great place to have a work-
shop and the local organisation was done very well. The workshop itself was very satis-
factory and addressed very well the needs of the participants to have a forum to discuss
their experiences in software family development.

It is felt that the series of IW-SAPF workshops have to be continued. A next workshop
is planned in the fall of 2001, at a different place, as most participants prefer to meet in
different scenery.

October 2000 Frank van der Linden

Table of Contents

D F0 1 go e 10Te15 o) WP 1
Frank van der Linden

Product Family Practice

Component Frameworks for a Medical Imaging Product Familycccccoovivnieenns 4
Jan Gerben Wijnstra

Meeting the Product Line Goals for an Embedded Real-Time System....................... 19
Robert L. Nord

A Two-Part Architectural Model as Basis for Frequency Converter Product
FAMILIES ..ottt 30
Hans Peter Jepsen, Flemming Nielsen

A Product Line Architecture for a Network Product...........cccooceeiiiiinininiiniecee 39
Dewayne E. Perry

Railway-Control Product Families: The Alcatel TAS Platform Experience................ 53
Julio Mellado, Manuel Sierra, Ana Romera, Juan C. Duerias

Business

Discussion Report "Business” SeSSI0MNccc.eeruieriirienienienienieenie et 63
Giinter Bockle

PuLSE-BEAT - A Decission Support Tool for Scoping Product Lines....................... 65

Klaus Schmid, Michael Schank

Domain Potential Analysis: Calling the Attention of Business Issues of
PrOQUKE-LINES ...c..eeiiiiieiieteee ettt st et 76
Sergio Bandinelli, Goiuria Sagardui Mendieta

Dependency Navigation in Product Lines Using XML......c..ccccccoceeniininninvinicneenne. 82
Douglas Stuart, Wonhee Sull, T. W. Cook
Product Family Concepts

Summary of Product Family Concepts SeSSiOn..........ccccoverirerieienierienenineneereeenes 94
Juha Kuusela, Jan Bosch

Software Connectors and Refinement in Family Architecturesc.cccceceecvecvennnne. 96
Alexander Egyed, Nikunj Mehta, Nenad Medvidovic

System Family Architectures: Current Challenges at NOKiaccocvevvveenveineenneens 107
Alessandro Maccari, Antti-Pekka Tuovinen

ol Ll Zyl_i}sl

VIII Table of Contents

Product Family Methods

Product Family MethOdscooieiiiiiiiiiiieiieiee e 116
Paul Clements

Organizing for Software Product Lines...........ccoooeerieiiiiiiiinieniecececeee e 117
Jan Bosch
A Comparison of Software Product Family Process Frameworksc..cccccoc... 135

Tuomo Vehkomdiki, Kari Kdinsdili

Issues Concerning Variability in Software Product Lines..........cccccceveeiiiiiniencene 146
Mikael Svahnberg, Jan Bosch

A First Assessment of Development Processes with Respect to Product Lines and
Component Based DevelOpmMEntc.eevvieriiiriieniieniie sttt 158
Rodrigo Ceron, Juan C. Duerias, Juan A. de la Puente

Evolution

Evolution of Software Product FAmiliesccooceeviiiiiiiiiiinieieiceeeeeee 168
Jan Bosch, Alexander Ran

Product Family Techniques

Product Family Techniques SeSS10M........ccveiiiieriieiiieniieeieeeieesieeeiee e 184
David M. Weiss

Beyond Product Families: Building a Product Population?cccceccvinininenene 187
Rob van Ommering

Requirement Modeling for Families of Complex Systemsc.cccocceverviireenennenne 199
Pierre America, Jan van Wijgerden

Creating Product Line ArchiteCturescocveeviieeiiieeniieiiieeiie it 210
Joachim Bayer, Oliver Flege, Cristina Gacek

Extending Commonality Analysis for Embedded Control System Families............. 217
Alan Stephenson, Darren Buttle, John McDermid

Stakeholder-Centric Assessment of Product Family Architecturecc.cccovvveenneee 225
Tom Dolan, Ruud Weterings, J.C. Wortmann
Surveys

ESAPS - Engineering Software Architectures, Processes, and Platforms for System
FAMIIIES ..ottt e e e e et e e e e e e et e e e e e e eenaaaes 244
Frank van der Linden, Henk Obbink

Product-Line ENGINEETINGcoovuviiriiiiiiieiie ettt ettt et st 253
Paul Clements
AUEOY INAEX ..ottt 255

ol Ll Zyl_i}sl

Introduction

Frank van der Linden

Philips Medical systems B.V., Veenpluis 4-6,
5684 PC Eindhoven, the Netherlands
frank.van.der.linden@ephilips.com

These are the proceedings of the third workshop on the theme of Software Architec-
ture for Product families. The series is originated by the drive of many companies to
minimize both the costs of developing and the time to market of new members of a
software rich product family (or product line). Today companies offering software-
intensive systems have to face several trends: modularity, component technology,
configurability, standardization, decreasing time to market, fast change of require-
ments, globalization, and more varying customer groups. These trends may cause
serious problems if we don’t meet them with adequate means.

This third workshop was organized as part of the Eureka X! 2023 programme,
ITEA project 99005, ESAPS. The aim of this project is to provide an enhanced sys-
tem-family approach in the following areas: Analysis, Definition and Evolution of
system-families. ESAPS is designed to enable a major paradigm shift in the existing
processes, methods, platforms and tools.

We believe that sharing maximization and reuse of software structure and compo-
nents within the product family appear to be the path to follow. The primary focus of
this workshop will be on methods, techniques and tools to manage the diversity of
products in a family through an architecture point of view.

The aim of the workshop is to bring together professionals from academia and in-
dustry to exchange ideas, experiences and identify obstacles and propose solutions in
the domain of software family architectures. Topics of interest include, but are not
restricted to, the: business, organizational, product and process aspects for product
families.

Submitted papers were grouped in 5 sessions. In addition, we introduced two ses-
sions, on configuration management and on evolution, because we felt that discussion
was needed on these topics, but there were no submitted papers on these subjects.
Finally we introduced a surveys session, giving an overview of the present situation in
Europe, mainly focussed upon ESAPS, and in the USA mainly focussed upon the SEI
Product Line Systems Program.

A general impression is that we are getting mature. There is less confusion about
terminology. During the workshop it appeared that the emphasis on process and or-
ganization issues. Technology is much less an issue. A poll under the attendants of the
workshop showed an interest in continuation of the series. We are presently consid-
ering to organize it in the fall of 2001.

There were 49 participants:

e 41 from Europe

e & from the USA

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 1-3, 2000.
© Springer-Verlag Betlin Heidelberg 2000

2 F. van der Linden

e 29 from industry
e 20 from research institutions.

Sessions

The workshop was split into the following sessions:
1. Product Family Practice
In this session a couple of experiences with the use of product family architec-
tures were presented.
2. Business
This session was meant to deal with the economic potential of product families.
3. Configuration Management
This session was introduced because we felt a need to deal with configuration
management from a product-line perspective. As it was already clear the SCM
tools are not used in a uniform way and that no real support exists for product
families.
4. Product Family Concepts
This session was meant to deal with novel approaches towards product family
development.
5. Product Family Methods
This session was meant to deal with the global organization of product family
development
6. Evolution
This session was introduced because we felt a need to deal with the evolution of
product family development.
7. Product Family Techniques
This session deals with specific techniques that can be used within product fam-
ily development.
8. Surveys
In this session a European and an USA survey of product family/product-line
development were presented
Most sessions consisted of a set of introductory presentations after which a lively
discussion followed. The results of these discussions were reported in the session
overviews within these proceedings.

Results of the Workshop

Although we had more time for presentations than the previous time, there was still a
lot of room for discussions. Not all discussion lead to a clear conclusion, but several
observations can be made.

At several places product family initiatives are set up. In many cases the industry
itself finds a need for going in the product family business. Universities and research
institutes follow. This is mainly caused by the fact that large-scale development pro-
grams are not feasible at such research institutes. However, research institutes are a
crucial factor in standardizing and consolidating the approaches. In particular this has

Introduction 3

both happened in Europe and in the USA. In the first case the origin comes from the
ARES, PRAISE and ESAPS projects. In the second case the Product Line Systems
Program has a central catalyzing role.

Although it seems to be obvious that a product family approach will be beneficial
in the case that you have to deal with a large amount of variation, no clear models
exist that determine the benefits of introduction of a product family programme, how-
ever, the first approaches are already available. A main reason for this may be that it
the technology seems already to be available, but the organization and the develop-
ment process have to be adapted, in uncertain directions. The adaptations often go
into a direction that is not in line with the culture that has grown in the last 30 years
within software development. In particular, initiating a development process and/or
organizational adaptation will lead to all kinds of problems recognized within change-
management. According to the discussions at the workshop we can conclude that
these kinds of problems are much larger that the technical ones.

The aim of the workshop was to bring together professionals from academia and
industry to exchange ideas, experiences and identify obstacles and propose solutions
in the domain of software family architectures. In this respect the workshop was a
success. The most prominent people in this field were present. Those that were not
present have shown interest.

We have to continue in this direction. In Europe we follow the track started with
ARES and ESAPS. In the USA the SEI is a central force in our community. We have
to grow to each other, since there are still some differences between the two ap-
proaches, for instance already in terminology. The term “product family” is in use in
Europe, the term “Product-line” originates from the USA. Both mean almost the
same, but not exactly. As we may expect the future workshops on this topic will less
pay attention to the technical matters, and more to the organizational and process
issues. We are considering setting up a 4" workshop on this topic.

Component Frameworks
for a Medical Imaging Product Family

Jan Gerben Wijnstra

Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
JanGerben.Wijnstra@philips.com

Abstract. In this paper we describe our experience with component frameworks
in a product family architecture in the medical imaging domain. The component
frameworks are treated as an integral part of the architectural approach and
proved to be an important means for modelling diversity in the functionality
supported by the individual family members. This approach is based on the
explicit modelling of the domain and the definition of a shared product family
architecture. Two main types of component frameworks are described, along
with the ways in which they are to be developed.

Keywords: Component Frameworks, Plug-ins, Diversity, Product Family
Architecture, Domain Modelling, Interfaces

1. Introduction

Products in various embedded system markets are becoming more complex and more
diverse, and they must support easy extension with new features. Also important
factors are a short time-to-market and low development costs. Such requirements
must be met with a product family that covers a large part of the market. The
development of a product family and its individual members (i.e. single products) can
be supported by a shared family architecture. Like any other architecture, such an
architecture must cover a number of quality attributes like performance, security and
testability; see chapter 4 of [2]. An important additional quality attribute of such an
architecture is support of diversity (related to modifiability). This paper focuses on
component frameworks as means for dealing with diversity.

The work whose results are presented here was carried out in the context of the
development of a medical imaging product family. The main characteristics of this
product family are:

e only a relatively small number of systems are delivered in the field, and almost
every system is different due to high configurability and customisability

e the delivered systems must be supported for a long time (10 to 15 years), and
updates of mechanical, hardware and software components in the field must be
supported by field-service engineers

e new features must have a short time-to-market, and the fact that the product family
deals with a relatively mature market implies that customers will have high
expectations and will request specific features

e high demands are imposed on the systems’ safety and reliability, because if a
system does not operate according to specification, it may be potentially dangerous
to patients and personnel

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 4-18, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Component Frameworks for a Medical Imaging Product Family 5

e there are different development groups at different sites, each of which is
responsible for the development of a sub-range of the total product family range

These characteristics must be tackled by applying reuse among the family members.
This is achieved by developing a common component-based platform for all the
family members, using component frameworks as a means for realising diversity.
This paper focuses on the approach taken with component frameworks. The
description of this approach comprises the following parts:

o the context, consisting of domain modelling and family architecting

how component frameworks can help in approaching the diversity at hand

the kinds of component frameworks used

further elaboration of one kind of component framework

the steps to be taken to arrive at such a component framework

These issues will be described in sections 0 through 0. Concluding remarks are to be
found in section 0.

2. Setting Up a Product Family

The approach for the development of the medical imaging product family is based on
the principles presented in [6]. This approach identifies two main development areas:
one in which a common family platform is developed, consisting of AFE (Application
Family Engineering) and CSE (Component System Engineering), and one in which
family members are developed using the family platform, which is called ASE
(Application System Engineering). The family members are developed by multiple
development groups, each of which is responsible for a sub-range of the total family
range.

In this section two AFE activities are briefly described, viz. domain modelling and
setting up the product family architecture.

Domain Modelling

When setting up a product family, one should focus not only on the functionality of
the first product, but on the complete set of known products and products envisioned
for the family. For the medical imaging product family, a requirements object model
has been set up that describes the concepts of the domain that are relevant for all the
products belonging to the medical imaging product family, including the diversity in
the domain. It is described with the UML notation and comprises about 100 class
diagrams, 700 classes, 1000 relationships, and 1500 attributes. More on the domain
modelling for this medical imaging product family can be found in [1].

Product Family Architecture

A product family architecture has been set up based on the identified domain concepts
and the scoping of the domain. Architectural styles and domain-specific architectures

6 1.G. Wijnstra

(see page 7 of [5]) have been used within this product family architecture, taking the
various quality attributes into account. The main architectural styles applied are:
e Layering
The family architecture defines a decomposition into a number of independent
layers. A layer (or parts of a layer) can be replaced independently of the others,
providing support for diversity.
e Independence of units
The family architecture defines a decomposition into a number of units. A unit
contains a coherent set of functionalities, and covers a sub-domain of the overall
identified family domain, e.g. acquiring images or processing images. In order to
avoid a monolithic design, units should be self-contained and de-coupled. This is
supported by letting each unit deal with its own relevant software aspects (e.g.
error handling, initialisation, etc.), using events as notification mechanism, using
blackboard-like information exchange mechanisms, etc.
In addition, domain-specific architectures (similar to architectural styles, but domain-
specific) are applied. Within the medical imaging domain, the image acquisition chain
plays an important role and can be captured in a domain specific architecture. This
chain contains the various peripheral devices, ranging from the generation of radiation
to the processing and storage of images. The synchronisation between these devices is
not done by the devices themselves, but by higher-level control functionality. In
software this leads to the identification of a number of units, each providing an
abstraction of the underlying hardware device, e.g. the radiation generator or the
image processor. These units are located in the technical layer, and are independent
from each other. This is shown in figure 1, in which the decomposition into units is
schematically depicted. The workflow using (and controlling) these devices
comprises a number of phases, like patient administration, image acquisition, image
viewing, image handling (including printing, archiving, communication via a
network); see [13]. This leads to a domain-specific architecture with units, each
representing a phase in the workflow. Since these units contain the application
knowledge, they a located in the so-called application layer. In principle, these
application units do not communicate directly with each other. Instead, blackboard-
like mechanisms are used. Next to these two layers, an infrastructure layer is added
providing basic facilities to the other two layers, like logging of events and watchdog-
like facilities.
According to [12], in which different styles for generic architectures are discussed,
the architecture schematically shown in figure 1 can be classified as a generic
variance-free architecture. This means that, at this level, the variance has not yet been
made explicit. The units have been identified and responsibilities have been assigned
to them. Each unit is in principle relevant in the context of each family member,
although some units are optional. Each unit must internally handle the family’s
diversity and consists of one or more software components that can be deployed
separately [14]. So, one could say that there are two levels of (de)composition: the
family architecture describes a first level decomposition into units, and each unit
consists of one or more components. These components may be plug-ins of
component frameworks, as will be discussed later on.

Component Frameworks for a Medical Imaging Product Family 7

Fig. 1. Unit View of the Product Family Architecture

3. Handling Diversity

One of the most characteristic quality attributes in a product family is support of
diversity. This section first describes the diversity in the medical imaging product
family, followed by an example. After that it will be explained which mechanisms
were used to realise this diversity and how these mechanisms fit in an architectural
context.

Diversity of the Medical Imaging Product Family

A consequence of the diversity amongst the various family members is that the family
architecture must support a variety of functions at the same time, which requires
configurability. Furthermore, the family must be extensible over time. Diversity
within a product family can stem from several sources. The main sources that can be
identified are changes in the set of features that must be supported by the product
family (relating to user requirements; see also [9] concerning the feature-oriented
approach) and changes in the technologies that are used for the realisation, e.g. new
hardware. When changes in the realisation are noticeable to end-users, they can also
be regarded as changes in features. In our product family, examples of diversity in
features are different procedures for acquiring images, different ways of analysing
images, etc. Examples of hardware-related diversity are new implementations of
image processing hardware, larger disks for image storage, and new devices for
moving patients.

In the domain and design models, diversity can be specified in a number of ways,
as illustrated in figure 2 for the functionality relating to the geometry! unit, one of the

Ol Ll Zyl_i.lbl

in the medical imaging family and determines
pjection on the image.

8 1.G. Wijnstra

sub-domains in the medical imaging product family. One way of describing diversity
is by allowing a range in the multiplicity of a certain concept; e.g. a Geometry may
have one or more ImageDetectors. Another way of allowing for diversity is by using
specialisations of generic concepts; e.g. a ModularGeometry is a special case of a
Geometry. It is also possible to define generic concepts that are not further detailed on
class level, but on object level, e.g. various instances of DefaultPositionMovements,
each with their own behaviour.

ImageDetector Geometry Movement
1.7 *
ModularGeometry MotorizedMovement

7

DefaultPositionMovement

DefaultHeight:DefaultPositionMovement

DefaultAngle:DefaultPositionMovement

Fig. 2. Diversity in a UML Model of the Geometry Sub-domain

Realising Diversity

The architect has defined two principles for the family architecture that are relevant

when selecting techniques for realising diversity; see [13]:

e binary reuse of components

e division of the product family development into a generic part and member-
specific parts

Component frameworks support these two principles, as will be explained below.
Generally, a framework forms a skeleton of an application that can be customised by
an application developer. So, a framework supports the division of functionality into a
generic skeleton part and a specific customisation part, covering the second principle.

Generally speaking, two types of frameworks exist: component frameworks and
class frameworks. Component frameworks support extensibility by defining interfaces
for components that can be plugged into the framework, enabling the binary reuse
principle. Component frameworks are usually easier to use because of this principle,
since class frameworks also use mechanisms like inheritance, and application
developers require information on the internal framework structure (see also [4]). This
ease of use is especially important in a situation in which component frameworks are
applied at several distributed development sites. Szyperski ([14], page 26) describes a
component framework as “a set of interfaces and rules for interaction that govern how
components plugged into the framework may interact”.

Component Frameworks for a Medical Imaging Product Family 9

Of course, not all diversity can be dealt with via component frameworks. Another
mechanism used for realising diversity is based on configuration via data. Component
frameworks are applied if significantly different functionalities are needed in different
family members, e.g. a different geometry offering different movements. The
configuration data is used when the differences are smaller, e.g. for country-specific
settings.

Component Frameworks and Architecture

The product family architecture presented in section O specifies only a high-level
view and applies to all the members of the product family; i.e. each unit is in principle
present in each family member, although some units are optional. Each unit consists
of one or more software components and may contain variation points at which
variation occurs for the various family members.

Component frameworks are applied as a means for supporting diversity. They
support the definition of a family platform consisting of those software components?
that are relevant for several (but not necessarily all) family members. In addition, a
generic family skeleton [7] has been defined that is formed by those software
components that are relevant for all the family members. This family skeleton is
based on the unit structure and the generic components within the units. It is possible
to construct such a family skeleton because the various subsystem domains are
relevant for all the family members and the (expected) variation in these sub-domains
is limited. Each unit may contain one or more component frameworks. The family
skeleton is schematically shown in figure 3. Here, the unit relations and the dark grey
parts (including component frameworks) form the family skeleton, the light grey parts
represent the specific plug-ins that can be added to the predefined variation points in
order to create a specific family member (configuration parameters are not graphically
shown). More information on component frameworks and architecture is to be found
in [15].

4. Kinds of Component Frameworks

A component framework defines one or more roles for participating components
(plug-ins), relative to the framework, using contracts. The medical imaging family
architecture comprises two kinds of component frameworks, which will be described
in the next two paragraphs. The main differences between these two kinds concern
whether the component framework is a software component itself managing the
interaction of the plug-ins, and what kind of abstractions can be offered on the
interfaces of the plug-ins.

2 Besides the software, the platform also comprises requirements and design documentation,
hardwareginterfacesspecificationsgarchitectural rules and guidelines, tools, test environments,
etc.

10 J.G. Wijnstra

Unit A Unit B
. Generic
E -
Unit C Unit D Unit E

=

The high-level family architecture defines units and their interfaces. These units
can again be decomposed into a number of components, again with clearly defined
interfaces. This leads to nested frameworks into which components, plug-ins, must be
inserted that adhere to the defined interfaces (some components may be optional).
Figure 4 gives an example of a framework (the grey part) that defines placeholders for
three plug-ins. Such a component framework is not a software component itself, and
plays no active role in connecting the plug-ins during initialisation-time or run-time; it
only defines a co-operation structure for a fixed number of plug-ins via contracts
based on interfaces. In this paper this is called a structure component framework
(although dynamic issues are of course also relevant here).

The second kind of component framework is a software component itself, which will
be called the framework component, and defines one or more roles to which one or
more components can be plugged-in. Such a role defines some kind of service that the
plug-ins provide via their interfaces. Such a service may range from a software
representation of a scarce hardware resource, e.g. image processing nodes which
provide services like noise reduction or image subtraction, to some piece of logical
functionality, e.g. a spelling checker. This means that a plug-in is a container of one
or more services. In addition to the plug-ins, there are usually clients that use the
functionality provided by the component framework and plug-ins as a whole. Such a
component framework contains a framework component, and this component is active
in connecting interfaces of plug-ins and providing the functionalities, the services, of
these interfaces to other clients; see figure 5. In this paper this will be called a service
component framework.

Such a service component framework has been developed for example for the
geometry sub-domain introduced in section 0. In the family architecture, geometry
has been identified as a unit. This unit as a whole provides amongst others a number
of movements for positioning a patient, like TableHeight and TiltTable. Various
geometry hardware modules exist, each providing a subset of all the possible
movements (about 100 movements in total). To deal with this diversity, the hardware
model is mirrored onto software by one framework component, which provides the
i i i plug-ins, each providing a number of

Fig. 3. Family Skeleton and Specific Components

Component Frameworks for a Medical Imaging Product Family 11

movements to the framework component. In this example, the movements are thus
modelled as the services that are provided by the plug-ins, related to the specific role.
The various clients of this component framework can use these movements without
worrying about the internal component framework structure. Next to the movements,
also other kinds of services have been identified for the geometry unit for which other
roles have been defined. This kind of framework has also been applied to other sub-
domains of the product family, e.g. in acquisition for adding acquisition procedures,
in reviewing for adding analytical functions, and in the field-service domain for field-
service functions (calibration, configuration, etc.).

ro—————— oo Plug-in
__________ Placeholder

|
[}
i
Component |
Framework 8
i

Plug-in

__________ Placeholder

Placeholder

Fig. 4. Structure Component Framework defining a Co-operation Structure for Plug-ins

[[! [
Client Plug-in Plug-in Plug-in

Service Service
Service
Service

Component Framework

Fig. 5. Service Component Framework actively connecting Plug-ins and Clients

The difference between the structure and service component frameworks is related
to the degree in which the functionality of the sub-domain involved can be
standardised and modelled as services, and the support for diversity that is needed. In
the geometry example the movements are identified as an important concept (see
figure 2), and they are handled as services provided by plug-ins that match the
hardware modules. The other kind of framework is applicable when less
standardisationsisspossiblesinsascertainssub-domain, and diversity can be supported by

12 J.G. Wijnstra

replacing a complete software component. For example, the film detector unit
(responsible for the positioning of the film), which, like the geometry unit, is a
technical unit, exists in a number of variants. Support of this variation is achieved by
replacing the complete hardware module. Furthermore, since the similarities between
them are limited, only the interface of the unit is standardised, not the internal
implementation. This variation is supported in software by replacing a complete
software component that realises the functionality of the entire unit.

The remainder of this paper will focus on the service component frameworks
because they are more specific and dedicated than other frameworks, allowing a
discussion of common issues.

5. Service Component Frameworks

Two important issues concerning the service component frameworks are the
responsibilities of the framework component, and the abstractions and interfaces that
the plug-ins must provide. These two issues will be discussed in the next two
subsections, followed by some observations on packaging component frameworks
and plug-ins.

Framework Component and Plug-in Responsibilities

In defining a service component framework, a number of responsibilities must be

taken into account for the framework component, viz.:

e Providing support for diversity
The most important responsibility of the framework component is to support
diversity. This means that the framework component must support easy
pluggability. To this end, the (expected) forms of diversity must be carefully
analysed and the right concepts must be selected. In the geometry example this is
amongst others the movement concept. This is closely related to the interface
issues discussed below.

e Providing a central access point
Since it enables diversity and because this diversity should not propagate through
the entire system, a framework component has to serve as a central access point for
the functionality provided by the plug-ins without revealing the specific
configuration of the plug-ins to the clients of this functionality. An important
activity here is maintaining a list of all the available services provided by the plug-
ins. In the geometry example, the movements are identified via a character string,
describing the kind of movement, e.g. TableHeight, TiltTable, etc.

e Providing a basic infrastructure
The plug-in should not interact directly with parts of the system that may vary over
time. Instead, the framework component has to provide some kind of infrastructure
to the plug-ins. This way, when the environment changes, only the framework
component needs to be updated. Such an infrastructure is for example responsible
for correctly initialising all the plug-ins and their services.

Component Frameworks for a Medical Imaging Product Family 13

e Providing additional functionality

In addition to the basic responsibilities mentioned above (connection management
and infrastructure), the framework component may also contain additional
functionality, since it is a component of its own. This is for example the case with
the geometry unit in which the framework component is responsible for adding
resource management and scheduling in order to deal with the scare movements in
a controlled way. Another possibility is that the framework component already
contains some services and can operate on its own, so that adding plug-ins to that
framework is not mandatory.

The main responsibility of the plug-ins is to provide the functionality (services) to the
framework component. This may take place during initialisation time or during run
time when the service is actually needed. The architectural concepts, interfaces and
infrastructure to which the plug-ins must adhere are defined by the component
framework.

Interfaces

Since component frameworks have been introduced to deal with diversity, they must
be able to deal with various plug-ins providing their own specific functionality. This
functionality must be handled by the component framework in a generic way and
provided to interested clients. This means that the right abstractions must be chosen
for the interfaces between the plug-ins and the component framework and between
the component framework and its clients.

Interfaces may be required to be clear and straightforward in use, and on the other
hand they may be required to be stable. These requirements do not always agree with
each other. Take for example the following interface (described in IDL):

interface IStableInterface : IUnknown
{
HRESULT GetParameter ([in] long ParID,
[out] long* ParValue) ;
HRESULT SetParameter ([in] long ParID,
[in] long ParValue) ;
HRESULT PerformAction([in] long ActionID) ;

}

This overly generic interface, which is not based on any specific domain concept, can
be used to provide any type of functionality. The advantage of this interface is that it
will remain stable, even if new actions or parameters are added. The disadvantage is
that it is no longer clear what kinds of actions are supported, since it does not refer to
specific concepts. This may lead to incorrect use of the interface, requiring additional
testing effort. So, one could say that in this case the syntax is stable, but the semantics
are not, because the interface can be used for many different purposes.

We chose several interfaces for the movements in the geometry example, each
representing one sub-group of movements, making the interface more specific and

14

J.G. Wijnstra

easier to use. In this case the semantics are stable (a movement is a known concept in
the domain), but the syntax may change slightly in the future.

interface IMovement : IUnknown

{

HRESULT GetPositionValue ([out] long* PositionValue) ;
HRESULT GetSpeedValue ([out] long* SpeedValue) ;

Packaging Component Frameworks

When defining a unit or a component, a deliverable is provided to support the clients
using this unit or component. This deliverable is called the requirements specification.
A requirements specification specifies the interface that is provided to the clients. It
includes the following parts:

class diagrams

These diagrams contain the interface classes that the unit/component provides to its
clients. The classes in a class diagram are related to each other via associations,
aggregations and generalisations. Each diagram has an annotation, describing the
group of classes as a whole.

sequence diagrams

A sequence diagram represents an interaction, which is a set of messages
exchanged between objects within a collaboration to effect a desired operation or
result. In this context, the sequence deals with the interaction between the
unit/component and its users. A sequence diagram contains a possible sequence of
events, and is thus not complete in that sense.

class descriptions

A description is made for each class. This description is based on the model laid
down by the class diagrams. The attributes, operations and state diagram of each
class can be specified.

software aspects

Special attention is paid to the various software aspects identified by the architect
that cut across most software components, like initialisation, error handling,
graceful degradation, etc. These aspects are related to the quality attributes; see
[10]. A separate section is identified for each relevant aspect.

Some additional issues must be taken into account when dealing with component
frameworks. For example, the geometry unit consists of a service component
framework with a number of plug-ins. In this case, the functionality provided by the
geometry unit as a whole in a specific family member cannot be given by one
document. Instead, two document types are used, viz.:

generic requirements specification

This requirements specification describes the generic interfaces that are provided to
the clients. All the service concepts, in this case the various types of movements,
their attributes, etc., are described in this document. However, no specific services
(instances) are described.

Component Frameworks for a Medical Imaging Product Family 15

e specific requirements specification
Each plug-in provides its own specific requirements specification. This
requirements specification describes the services provided and the plug-in’s
specific properties. The MaximumPosition, MaximumSpeed and other
requirements need to be specified for each movement. The generic requirements
specification focuses on the generic meaning of the service interfaces, whereas the
specific requirements specifications deal with service-specific issues.

Another important aspect besides the pluggability of the actual software component

plug-ins is the availability of this pluggability on a document level. This makes it

easier to determine the total requirements specification for a specific family member,
since each plug-in has a related document describing the specific services of that

plug-in. This agrees with the idea that a component is the unit of packaging, i.e. a

component consists not only of executable code, but also of its interface

specifications, its test specifications, etc. (see also [3]).

A component framework defines the boundary conditions to which each plug-in
must adhere. Since several plug-ins are usually developed for a framework, it is
worthwhile to provide support for plug-in development, including:

e A documentation template can be provided for the specific requirements
specifications. This will ensure that the author knows what needs to be specified
and that all relevant issues are addressed.

e The interfaces and design of a component framework dictates the design of the
plug-ins. That is why support can also be given for the design documentation of
plug-ins.

e The interface files of the interfaces that the plug-in needs to support must be
provided. Furthermore, some classes that are relevant for the design of each plug-in
can be provided. It is also possible to provide a complete example plug-in,
containing all the information relevant to a plug-in implementer.

e A test specification can be provided against which each plug-in must be tested. It is
even possible to provide some test harness in which these tests can be performed
automatically.

6. From Domain Model to Component Frameworks

As stated above, the product family architecture does not show diversity on the level
of units. This means that the units form a stable family skeleton. The diversity can be
found inside the units. One of the ways of dealing with this is to divide the unit model
into a generic part (related to one or more component frameworks) and a specific part
(the plug-ins), which is similar to the approach discussed in [8]. Each unit has a part
of the overall domain model assigned to it as a starting point for the design activities.
A number of steps in this iterative modelling process can be identified (using the
geometry example):
1. The design activity adds design classes to the assigned domain model, e.g. a
manager class maintaining a list of all the movements is introduced, and a priority-
based scheduler class is added to handle the scarce movement resources.

16 J.G. Wijnstra

2. Then the commonality and diversity are analysed. This analysis is closely related
to the diversity in features and realisation techniques that the product family must
support. Identify which part of the model will remain stable and which will vary
from one family member to another and through time. The larger the selected
generic part, the lesser the resulting flexibility.

3. On the basis of the previous analysis it must be identified which concepts must be
used for the services that the plug-ins should provide to the component framework.
In the example, the movements were selected as the services. It may be possible to
handle the variation more efficiently by introducing generic concepts (these
concepts may even be useful in the domain model). For example, various specific
moving parts of a geometry have specific position information. By introducing a
concept like a GeometryComponent class containing specific position information,
this information can be handled in a generic way.

4. Identify which additional design concepts are needed by splitting the model into
two parts, i.e. the framework component and the plug-ins. This splitting has more
consequences for component frameworks than for example for class frameworks,
in which techniques like inheritance may also be used. For example, the generic
part is made responsible for starting up the plug-ins during the system’s
initialisation .

To summarise, step 1 contains the ‘normal’ design activity. In step 2, the diversity is
analysed. The relevant service concepts that must be provided by the plug-ins are
identified in step 3. Finally, step 4 introduces the infrastructure in which these
services are handled.

Note that it is very difficult to obtain a completely stable component framework
the first time. Many factors may lead to modifications in the interface, e.g. changes in
the domain model, the choice of wrong concepts, etc. So, usually a couple of
iterations will be needed.

7. Concluding Remarks

In this paper the component framework engineering has been described as part of the
software development process for a medical imaging product family, focusing on
service component frameworks. The purpose of introducing component frameworks
is to support diversity. The quoted geometry unit example is one of several service
component frameworks that have been introduced in the medical imaging product
family.

The two important starting points for component framework engineering are the
domain model, which provides the relevant domain concepts, and the product family
architecture, which provides the main decomposition into units. Some units must deal
with internal diversity. Such diversity can be handled by one or more service
component frameworks per unit. To this end, the functionality must be split into a part
that is realised in the framework component and a part that must be provided by the
plug-ins.

The approach described in this paper is currently being applied at Philips Medical
Systems, involving development groups distributed across various sites. A large part
of the development and testing can be shared for the various family members.

Component Frameworks for a Medical Imaging Product Family 17

Furthermore, the component frameworks define clear interfaces for extension with
specific features. This approach is very promising as far as the first release of the
family members is concerned. Of course, further releases must validate this approach.

The approach taken here is not specific to the medical domain. In fact, [7]
describes a product family approach with related principles that has been very
successfully applied for a telecommunication switching system family. Whether this
approach is applicable will depend on the domain and requirements of the product
family concerned. For example, it is relevant that the domain in which the family is
positioned is relatively stable, which is the case in this mature medical imaging
domain. The domain and its variation can then be modelled without having to expect
fundamental changes. Furthermore, the individual members of the family must have
sufficient commonalities in the sense that the sub-domains identified will be relevant
for most of the family members (unlike in the approach described in [11], which deals
with product populations), so that a stable family skeleton can be obtained for the
development of each family member. The variation within each of the sub-domains
must be bounded so that the relevant diversity can be modelled by (service)
component frameworks. Finally, this approach is based on component-based
development and is applicable to complex software-intensive product families, it
allows a high degree of variation in the features supported by the individual family
members via plug-ins and configuration parameters, it reuses a large part of the
development and test effort by establishing a family platform, and it supports
development in distributed development groups.

Acknowledgements

This research has been partially funded by ESAPS, project 99005 in ITEA, the Eureka
212023 Programme.

I would like to thank the chief architect Ben Pronk and all the people involved in
the medical imaging product family development. I also thank my colleagues Pierre
America, Jirgen Miiller, Gerrit Muller, Rob van Ommering, Tobias Rotschke, and
Marc Stroucken for comments on earlier versions of this paper.

References

[1] Pierre America, Jan van Wijgerden, Requirements Modeling for Families of Complex
Systems, Proceedings of the IW-SAPF-3 (this volume), Las Palmas de Gran Canaria,
March 2000.

[2] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, Addison
Wesley, Reading, Mass., 1998.

[3] Desmond F. D’Souza, Alan C. Wills, Objects, Components, and Frameworks with
UML: The Catalysis Approach, Addison Wesley, Reading, Mass., 1998.

[4] Mohamed E. Fayad, Douglas C. Schmidt, Object-Oriented Application Frameworks,
Communications of the ACM, Vol. 40, No. 10, pages 32-38, October 1997.

[5] Christine Hofmeister, Robert Nord, Dilip Soni, Applied Software Architecture,
Addison-Wesley, Reading, Mass., 1999.

[6] Ivar Jacobson, Martin Griss, Patrick Jonsson, Software Reuse — Architecture, Process

and Organization for Business Success, Addison Wesley, Reading, Mass., 1997.

18 J.G. Wijnstra

[7] Frank J. van der Linden, Jirgen K. Miiller, Creating Architectures with Building
Blocks, IEEE Software Vol. 12, No. 6, pages 51-60, November 1995.
[8] Jacques Meekel, Thomas B. Horton, Charlie Mellone, Architecting for Domain

Variability, Proceedings of the Second International ESPRIT ARES Workshop, pages
205-213, Springer Verlag, Berlin Heidelberg, 1998.

[9] Jirgen K. Miiller, Feature-Oriented Software Structuring, Proceedings of
COMPSAC *97, pages 552-555, August 1997.

[10] Jirgen K. Miiller, Aspect Design with the Building Block Method, Proceedings of the
First Working IFIP Conference on Software Architecture, pages 585 — 601, Kluwer
Academic Publishers, 1999.

[11] Rob van Ommering, Beyond Product Families: Building a Product Population?,
Proceedings of the IW-SAPF-3 (this volume), Las Palmas de Gran Canaria, March
2000.

[12] Dewayne E. Perry, Generic Architecture Descriptions for Product Lines, Proceedings

of the Second International ESPRIT ARES Workshop, pages 51-56, Springer Verlag,
Berlin Heidelberg, 1998.

[13] Ben J. Pronk, Medical Product Line Architectures — 12 years of experience,
Proceedings of the First Working IFIP Conference on Software Architecture, pages
357 - 367, Kluwer Academic Publishers, 1999.

[14] Clemens Szyperski, Component Software — Beyond Object-Oriented Programming,
Addison Wesley, Reading, Mass., 1997.

[15] Jan Gerben Wijnstra, Supporting Diversity with Component Frameworks as
Architectural Elements, to appear in the Proceedings of the ICSE 2000, Limerick,
June 2000.

ol LN ZJL?H

Meeting the Product Line Goals
for an Embedded Real-Time System

Robert L. Nord

Siemens Corporate Research
755 College Road East

Princeton, NJ 08540 USA
rnord@scr.siemens.com

Abstract. This paper describes the software architecture design of a real-time
monitoring system. The system has different configurations to produce a set of
medium to high-end monitoring systems. The system was designed to meet the
product line quality objectives of configurability, extensibility, and portability
within the constraints of an embedded real-time system. These objectives were
achieved using global analysis and the principle of separation of concerns to or-
ganize the architecture into multiple views. The major design artifacts in each of
the views were: (1) a publish-subscribe communication protocol among soft-
ware entities that allowed requirements to be isolated to a component; (2) a lay-
ered design that provided encapsulation of common services; (3) and a task
structure that facilitated flexible process allocation.

Keywords: Software engineering, software architecture, product line, global
analysis, multiple views, design decisions, industrial applications.

1 Introduction

This paper describes the architecture of an embedded, real-time patient monitoring
system. It is a stand-alone bedside unit that obtains and displays a patient’s vital signs,
or sends them to a central unit for display. The bedside unit can be transported along
with a patient, so physical size and cost limitations impose severe hardware con-
straints. The system has different configurations to produce a product line of medium
to high-end patient monitors. The system was designed to meet the product line qual-
ity objectives of configurability, extensibility, and portability within the constraints of
an embedded real-time system.

The architecture was designed to be configurable. The architecture serves as the ba-
sis for medium to high-end products. Customer setups have a lot of commonality but
many minor differences as well. The user is able to customize the system with hun-
dreds of user settings. Different levels of functionality are provided in the same soft-
ware versions based upon user purchased options. The packaging of the software can
be easily changed in response to market conditions. The system supports hundreds of

F. van der Linden (Edv): IW-SAPE-3, LNCS 1951, pp. 19-29, 2000.
© Springer-Verlag Beilin Heidelberg 2000

20 R.L. Nord

parameters through directly connected sensors and through third party devices via a
standard communication interface.

The architecture was designed be extensible. Through a phased release, new fea-
tures are constantly added. The monitor supports thousands of application rules. These
rules are dynamic in nature and are likely to become more complex in the future
driven by changes in hardware, software, and the application domain. Major new
features are constantly added to the system usually with little or no modification to the
rest of the system. Minor requirement changes can usually be handled by changing a
single software component. Adding new features or implementing requirement
changes did not affect the integrity of other already working features.

The architecture was designed to be portable. Changes in the hardware and soft-
ware platforms were anticipated in order to take advantage of new technology that
provides increasing power at lower costs. The system runs on three operating systems,
communicates on two networks, uses three different graphics libraries, and executes
on two different target-hardware platforms (one of which has a single main processor
and the other has two main processors). It was easy to move the product to each of the
new environments. Porting to a new operating system only affected the inter-process
communication libraries and implementation of the operating system library inter-
faces. Moving to a different graphics library only required a rewrite of the implemen-
tation of the generic graphics library.

The architecture was designed to satisfy the real-time performance requirements.
The monitor must provide correct and timely information to the user. Deadlines and
priority levels could change based on changes to requirements or the platform. There
is flexibility in assigning modules to processes allowing for tuning to meet these re-
quirements. This was facilitated by limiting interactions between modules. Local op-
timizations were employed (e.g., minimize data copying, produce data only when
needed). These maintained the integrity of the architecture and were transparent to the
software components. Because of the amount of data and the time critical require-
ments, displaying waveforms on the screen necessitated a special transfer mechanism,
opting out of the publish-subscribe communication pattern defined by the architecture.
The publish-subscribe protocol served the performance needs for the rest of the sys-
tem.

Successful architects analyze factors that have a global influence on the system.
This global analysis task begins, as the architecture is defined [2,4]. Its purpose is to
capture the factors that influence the architecture design, characterizing how they
change. Global analysis takes on an even more prominent role in product line design.
The architect must characterize how the influencing factors vary among the products
within a product line. The architect develops and selects strategies in response to these
factors to make global decisions about the architecture that allows the developers of
the products to make uniform decisions locally. Guiding the developers in this way
ensures the integrity of the architecture. This is an iterative process. During the design,
certain decisions feed back into the global analysis, resulting in new strategies.

The remaining sections describe the system and the global analysis activities that
led to the architectural decisions for meeting the product line goals.

Meeting the Product Line Goals for an Embedded Real-Time System 21
2 System Overview

The primary function of the system is to acquire data and display it to the user. This
functionality is seen in the scenario depicted in Figure 1. Scenarios are used to show
how data flows among the major functional components of the system.

1: wvf 3: param 4: alarm
_—
acquire analyze }Z‘;‘:—;s: display
2: wvf

Fig. 1. Producer Consumer Processing Scenario

The scenario is described by a UML object interaction diagram that shows how raw
data is acquired, processed, and displayed on the screen [5]. Arrows, labeled with a
sequence number and the type of data indicate data flow between entities. The wave-
form data is first acquired. The acquired data is both displayed on the screen and proc-
essed to produce the raw parameter values. These values are further processed to pro-
duce the alarm information for the clients and displayed on the screen.

In addition to these functional requirements, the architecture design was influenced
by the need of the monitoring system to be configurable, handle a flexible and grow-
ing set of requirements, run on different hardware and software platforms, and meet
high availability, real-time performance, and quality assurance requirements.

These objectives and the influence they exerted on the architecture are summarized
in Table 1.

Table 1. Quality Objectives

Objective How Achieved

Configurability Isolate requirement to a component
Device management environment

Extensibility Rule-based system
Isolate requirement to a component
Separate policy from procedure

Portability Layered design
Software entity template
Common processing libraries

Real-time Flexible task allocation
Performance

Global analysis and architecture design activities are structured according to four
architecture views [7]. Each of the four views describes particular aspects of the sys-

22 R.L. Nord

tem. The resulting architecture centered on the following design artifacts in three of
the views:

e a publish-subscribe communication protocol among software entities that al-

lowed requirements to be isolated to a component,

e alayered system that provided encapsulation of common services,

e and a task structure that facilitated flexible process allocation.

The following section provides the rationale for how the architecture resulted from
the objectives.

3 Global Analysis

For the monitoring system, there are a multitude of factors that influenced the archi-
tecture. Some of the factors the architect considered included the skills of the develop-
ers, the schedule, general-purpose and domain-specific hardware, product features,
and performance. In order to bring some order to these factors, they can be organized
around the quality objectives that the architecture must meet. Within each of the ob-
jectives there will be a number of issues to address. Here we will focus on three issues
that have a significant impact on the architecture: adding and configuring features,
changing the software platform, and meeting the latency requirements.

Issue: Easy Addition and Configuration of Features

There are many application-policy rules that are dynamic in nature. These application
rules place requirements on the software components with respect to what action they
must perform, what information they need, and what information they must produce.
They are likely to become more complex in the future driven by changes in hardware,
software, and the signal-processing application domain.

The monitoring system must dynamically adapt to what features are presented to
the user depending on what network and I/O devices it is connected to. Designing a
system for easy addition of features is complicated by the requirement that these
changes can occur while the monitor is running.

Influencing Factors

e There are hundreds of customized settings and thousands of applications rules.
New settings and rules are being added regularly. This has a large impact on all
of the components.

e The monitor can be moved to a different network. It must handle dynamically
changing features based on the network type. This affects the user interface.

e The monitor must communicate with third party devices and dynamically adapt
to the devices connected to it. New devices could be added in the future. This
affects the data acquisition components.

Meeting the Product Line Goals for an Embedded Real-Time System 23

e Different levels of functionality can be provided depending on user purchases.
The packaging of software is likely to change in response to market conditions.
This has a moderate impact on all components.

Solution

The application rules defined in the requirements suggest a rule-based solution. While
this approach facilitates modifiability, there were concerns about performance. The
data flow processing nature of the acquisition suggests a pipes and filters solution.

The solution adopted was to build applications using loosely coupled software
components that communicate using a publish-subscribe protocol.

e Strategy: Separate monitor functionality into loosely coupled components.
Separate monitor functionality into software components that represent a logi-
cally related set of application features.

o Strategy: Introduce publish-subscribe communication. Each component owns
or is responsible for publishing information that may be of interest to other
components in the system. Other components are able to subscribe to the in-
formation and are informed of changes as they happen.

The solution incorporates aspects of both the pipes and filters and rule-based ap-
proach. In one sense the solution is like a bulletin board where components watch for
data of interest, perform an action, and then update the global state. But it is not a
general rule-based system since the data flow of high-level functionality can be identi-
fied — data is acquired, analyzed, and displayed. This helps identify end-to-end dead-
lines in order to meet the real-time requirements.

The architecture starts to emerge as a set of design constraints and decisions. The
first such decision is to define the notion of an interacting software component and the
abstract connections among them in the conceptual architecture view. Figure 2 is a
UML class diagram that shows the structure of a software entity.

Entity
Port
JAN
]
Output Publish
Port producer Subscribe
Input 1.*
Port consumer

Fig. 2. Entity Structure
A software entity communicates with other entities through their ports via mes-
sages. There are different message types for the data handled by the monitor. These
include the raw data coming in from the'devices, waveform samples, parameter val-

24 R.L. Nord

ues, and alarm status. Ports are of two types. Entities publish information via its out-
put ports and subscribe to information via its input ports. One entity is responsible for
producing a specific message that one or more other entities consume. Entities are
decoupled in the sense that producers don’t know what entities are consuming its data
and consumers do not know the entity responsible for producing the data.

The PublishSubscribe connector represents an abstract connection between a pro-
ducer and a consumer. Entities first register for data of interest. When published data
is written, it is disseminated to all entities subscribed to it.

Meeting the Objective

Providing a uniform model of loosely coupled components and explicitly recognizing
the communication infrastructure provided developers with the flexibility to construct
the varying product applications. It also allowed them to focus on the functionality of
the components without regard to what other components were using it and how data
would be transferred in order to meet the requirements for extensibility and configura-
bility.

Issue: Changing the Software Platform

The software platform consisting of the operating system, communication mecha-
nisms, and graphics commands is likely to change when the applications are ported to
new hardware platforms.

Influencing Factors
e Portability requires that the system operate on different graphics environments,
operating systems, and processors. These hardware and software platforms are
likely to change. They may not provide the same services or have the same in-
terfaces. This has a large impact on all of the components.
e Support is needed for client server applications in a distributed environment.
Middleware support must be provided on top of the real-time operating system.

Solution

Additional infrastructure software was added between the product applications and the
hardware platform; this included networking software, communication mechanisms
and interfaces, database mechanisms and interface, and a timer interface.

o Strategy: Encapsulate operating system and communication mechanisms. En-
capsulate operating system dependencies into an OS library and interprocess
communication library which include software timer support.

o Strategy: Encapsulate graphics. Create generic graphics interface and encap-
sulate dependencies in a library so that display software can be easily ported to
different graphics environments.

Meeting the Product Line Goals for an Embedded Real-Time System 25

e Strategy: Encapsulate data management. Create a generic data management
interface to a central repository that serves as the dominant mechanism by
which applications share data.

o Strategy: Encapsulate device management. Create a generic device manage-
ment interface that provides applications with a uniform way to access devices.

The application software is layered on top of the platform, graphics, and device

manager software as seen in Figure 3. Layers are represented as UML packages. The
layering structure from the module architecture view is used to implement the global
analysis strategies of providing abstract interfaces and isolating dependencies. The
software platform provides an interface to the host platform to enhance portability.

—
<<layer>>
Applications
1 z 1
<<layer>> <<layer>>
Device Mgt Data Mgt
S <<layer>>
<<layer>> Graphics
— OS Interface)
<<layer>>
Device Mgrs
) Real-Time OS
N y
Hardware

Fig. 3. Layering Structure

More details about the infrastructure for managing communication among entities
emerge. There are modules corresponding to each entity in the conceptual architec-
ture. These modules are organized in the Applications and Device Managers layers.
The publish-subscribe connector is implemented by modules in the Data Management
layer.

Data management is part of the software platform and was developed in response to
the extensibility requirements to provide support for communication between entities.
Portability places additional requirements on the solution regarding interfaces and
middleware support. Data management is responsible for providing support for data
publishing and registration, data distribution, and access to local and remote data.

Meeting the Objective
The collection of common application programmer interfaces (APIs) for device serv-
icesydatasmanagementygraphicsyrandstheroperating system provided the solution for

26 R.L. Nord

meeting the portability requirements. These APIs accommodated the variations among
the products such as the number and types of devices, processors, and operating sys-
tems. When changing the software platform, changes are isolated to the implementa-
tion of the graphics or OS interface, or to the implementation of a device driver ad-
hering to the device manager API.

Issue: Meeting the Latency Requirements

Meeting the real-time performance requirements is critical to the success of the prod-
uct. Data must be shown on the display as it is being acquired and alarms must be
enunciated within milliseconds of detection.

Influencing Factors

e The processor speed is likely to change very frequently, even during develop-
ment. As technology improves, it is desirable to be able to use faster processors
or change the allocation of processors. There is no impact to the applications
unless the operating system changes.

e Monitors must provide correct and timely information to the user. The maxi-
mum delays, specifying the latency of the information, are not negotiable.
This has a large impact on data acquisition and processing components.

e Several different processing priority levels are required based on different
processing deadlines. Deadlines and priority levels could change based on
changes to the requirements or the platform.

Solution

Performance has been considered when coming up with the entity infrastructure. De-

composing the system into separate components provided the flexibility to allocate

them to different processes. Entities were assigned resource budgets that provided a

baseline for performance estimates that could be tracked and refined over time.

Multiple processors and a real-time operating system were also used to help meet
the high performance requirements. Different processor configurations can’t be ruled
out in the future. This reinforces the need for the portability objective and the solution
to encapsulate the software platform.

e Strategy: Divide logical processing into multiple components. Divide logical
processing into multiple software components to meet the timing deadlines.

o Strategy: Create a task for each unique processing deadline. Use rate-monotonic
analysis [3] as a guide to assign entities to tasks based on processing deadlines
and to give priority to tasks which run more frequently or have a shorter deadline.

e Strategy: Use multiple processors. Choose a digital signal processor for signal
filtering, use the fastest general-purpose processor available for main processing,
and move graphics processing and waveform drawing to a graphics processor.

Tasks have a structure as shown in Figure 4. The structure is depicted using a

UML, class.diagram., The heavy. border. around the task indicates that it is an active

class. Its instances own a thread of control and can control activity. Each task has a

Meeting the Product Line Goals for an Embedded Real-Time System 27

message queue that receives messages. The group control module contains the control
logic software that routes the message to the appropriate entity.

Queue
?read
Group Control
P assignedto P>
Task
Entity Module |1
v assignedto P>

Fig. 4. Task Structure

Constraints are placed on the entities so that they can be flexibly allocated to proc-
esses. They must be non-blocking and communicate with each other by message
passing only. The trade-off was adding complexity to the design of the modules to
conform to this asynchronous access request model of interaction.

Entity modules that are defined in the module structure are assigned to a task based
on processing deadlines following the principle of rate monotonic analysis (more
stringent deadline tasks have higher priority). Entity modules with similar processing
deadlines are placed in the same task; entity modules with unlike processing deadlines
are placed in different tasks.

The data management module that implements the publish-subscribe connector is
not a separate process but rather is implemented as a library that is linked into each of
the tasks. This way the data manager does not become a bottleneck since messages are
sent directly to subscribers. The trade-off was in distributing the overhead of dissemi-
nating messages to each of the entities.

It was recognized from the beginning that the publish-subscribe protocol would not
be sufficient for handling the high speed data transfer necessary to display the wave-
forms on the screen in real-time. An optimized waveform connector was used for this
special case.

Meeting the Objective

A uniform model of the task structure and guidelines for developing entity modules
and assigning them to tasks provided the necessary constraints that the real-time per-
formance requirements would be met. At the same time, local decisions could be
made concerning the number of tasks, assignment of modules to tasks, priorities and
runtime configuration in order to accommodate variations among the products and to
provide the flexibility to tune the system to enhance performance.

28 R.L. Nord

4 Lessons Learned

Systems are growing in complexity. Understanding the entire product is a daunting
proposition. At the time of inception, the need for a common product line architecture
was recognized. A common architecture would be usable on multiple products, pro-
vide services independent of the operating system, user interface, hardware, and net-
work, and promote the portability of the software. The technical goals were to care-
fully separate concerns to accommodate variations among products and to reduce the
impact of change as the system evolved over time. Underlying these goals was the use
of global analysis and multiple views.

Global analysis yielded a set of constraints on a collection of component types and
their patterns of interaction for the product line. These building blocks were devel-
oped from first principles and the experience of building previous products. The con-
straints were enforced through design guidelines, training, software code templates,
and the code architecture view. Component types, their relationships, properties, and
constraints define an architectural style [1,6]. As experience grows these patterns may
be recognized as styles and the architect could select common styles from a repository.
The styles embody a set of predefined design decisions. Constraints that emerge dur-
ing global analysis could be used to select the appropriate ones. In subsequent phases
of design, the strategies are used to refine the previous design decisions and instantiate
the component types in the construction of the architecture.

Multiple views is one way of using the principle of separating concerns to make
building the system manageable. Previous products started the software architecture
design with the execution view, which then dominated the architecture and limited the
evolution and portability of the products. To support the system’s planned configura-
tions and additional ones in the future, the architects designed an explicit module view
that was separate from the execution view. The system did not have an explicit con-
ceptual view originally, although it was implicitly there. This use of multiple views
(including an explicit code architecture view) proved critical in meeting the product
line requirements of building an extensible, portable, and configurable system.

Architecture provides a framework for the developers.

e The entity structure in the conceptual view allows the entity designers to focus
on the functionality of the components and promotes extensibility and configu-
rability. Making the architecture infrastructure explicit provides a basis for re-
use and ensures the integrity of the architecture.

e The layering structure in the module view provides a framework for hiding the
details of the software platform from the applications and promotes portability.
Common libraries provided a standard interface for the operating system, inter-
process communication, device management, graphics, and database access.

e The task structure in the execution view provides the flexibility to tune the sys-
tem to meet the performance objectives.

The architecture does not make the hard parts disappear but it makes them more
manageable. Additional resources are needed to support the architecture. But this
additional support results in the benefits of improving communication among the team
and documenting the early design decisions.

Meeting the Product Line Goals for an Embedded Real-Time System 29
References

1. Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice,
Reading, MA: Addison-Wesley, 1998.

2. Hofmeister, C., Nord, R., Soni, D. Applied Software Architecture, Reading,
MA: Addison-Wesley, 2000.

3. Klein, M., Ralya, T., Pollak, B., Obenza, R., Gonzales Harbour, M. A Practi-
tioner’s Handbook for Real-Time Analysis, Boston: Kluwer Academic, 1993.

4. Nord, R.L., Hofmeister, C., Soni, D. Preparing for Change in the Architecture
Design of Large Software Systems, Position paper accepted at the TC2 First
Working IFIP Conference on Software Architecture (WICSAI), 1999.

5. Rumbaugh, J., Jacobson, 1., Booch, G. The Unified Modeling Language Refer-
ence Manual, Reading MA: Addison-Wesley, 1999.

6. Shaw, M. and Garlan, D. Software Architecture: Perspectives on an Emerging
Discipline, Upper Saddle River, NJ: Prentice-Hall, 1996.

7. Soni, D., Nord, R.L., and Hofmeister, C. Software Architecture in Industrial
Applications, in Proceedings of the 17th International Conference on Software
Engineering, New York: ACM Press, 1995.

A Two-Part Architectural Model as Basis for Frequency
Converter Product Families

Hans Peter Jepsen and Flemming Nielsen

Danfoss Drives, Ulsnaes 1, DK-6300 Graasten, Denmark
{hans peter jepsen,fl nielsen}@danfoss.com

Abstract. Frequency converters, as well as other embedded systems in the
process control and measurement domains, are designed to perform continuous
processing of input values and to produce and maintain corresponding output
values. At the same time these systems have to react on events that reconfigure
the processing algorithms. This paper will present an architectural model that
separates the event handling and the continuous data processing and let the
event handling part select, which of multiple control or output algorithms in the
continuous processing part has to be the active algorithm. Finally it presents,
how this architectural model has given raise to concrete architectural elements.

Introduction

Danfoss Drives - one of the largest producers of frequency converters - is in a
situation like many others: we have to produce a number of product series with an
increasing number of variants, where we have to decrease time-to-market and keep
development costs low. In order to meet these challenges, we are developing a
product family software architecture, which is based on object-oriented principles and
makes systematic software reuse possible.

Some of the first steps developing this architecture have been taken inside the
Danish research project Centre for Object Technology (COT)!, where inside a pilot
project, an object-oriented model and a corresponding prototype implementation in
C++ for the central parts of a VLT frequency converter were developed [4].

' The Centre for Object Technology (COT) is a Danish collaboration project with
participants from industry, universities and technological institutes. The overall
objective of Centre for Object Technology (COT) is to conduct research, development
and technology transfer in the area of object-oriented software construction, for more
details see [COT]. The activities in COT are based on the actual requirements of the
participating industrial partners. COT is organised with six industrial cases, and
Danfoss is participating in case 2 entitled “Architecture of embedded systems”. The
purpose of COT case 2 is to experiment with the introduction of object technology in
embedded systems.

2 VLT issthestrademarksfor-frequencysconverterssproduced by Danfoss Drives.

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 30-38, 2000.
© Springer-Verlag Betlin Heidelberg 2000

A Two-Part Architectural Model as Basis for Frequency Converter Product Families 31

A major breakthrough in the modelling of our frequency converter was the
formulation of a conceptual model, which we call “the two-part architectural model”.
A major inspiration for this model was the process control architectural style from [2]
along with the oscilloscope and cruise control examples from the same book.

Although the two-part architectural model may seem - and in fact is - very simple,
it has been of great help since we formulated it. Further we think, that this model will
be relevant for many other types of embedded systems, such as systems in the process
control and measurement domains, which are designed to perform continuous
processing of input values and to produce and maintain corresponding output values.
At the same time these systems have to react on events that reconfigure the processing
algorithms.

In this paper we will present the two-part architectural model, and show how this
model relates to the architectural style “process control” [2]. Further we will present,
how this architectural model has given raise to concrete architectural elements, and
finally describe the benefits we have experienced, that this model gives us. The reader
should be aware, that the background for the ideas presented here is only based on our
work with frequency converters. We have not found a similar approach described
elsewhere - neither on the frequency converter domain nor on other domains —
although our searching has been limited.

Frequency Converters

A frequency converter is an electronic power conversion device used to control shaft
speed or torque of a three-phase induction motor to match the need of a given
application. This is done by controlling the frequency and corresponding voltage on
the (three) motor cables.

A typical application - using a frequency converter in connection with a fan to
maintain a desired room temperature - will illustrate the use of a frequency converter.

It is possible to save a lot of energy
by reducing the fan speed as much as Cold air |:> %i%]
possible while maintaining the desired \
temperature. This is a normal closed-
loop feedback control problem.

A problem, that often occurs when
using a frequency converter in
connection with a fan, is, that when
the motor is not powered, the fan is

Temperature
transmitter

“wind milling”, i.e. running

backwards. Therefore, before

applying power, the fan must be Fig. 1. A frequency converter used for controlling
stopped or “caught”. the speed of a fan.

The following scenario will give an
idea of the working of the software, that this application requires:

Initially the motor is coasted (i.e. no output is applied to the motor) and the fan is
wind milling. When_the frequency. converter receives a “start” command, it starts
performing an algorithm, that we call “catch spinning motor”. Whenever this

32 H.P. Jepsen and F. Nielsen

algorithm has detected the motor speed and adjusted its output to the motor, we have
reached a situation where the frequency converter is controlling the motor. The
algorithm sends an event with this information. The algorithm is then replaced with a
“process closed loop” algorithm, which maintains the desired temperature.

In the example above we see three modes of steady-state operation, namely
“coast”, “catch spinning motor” and “process closed loop”. We also see, that the shift
from one type of control to another happens as a result of an event, where the event
can come from outside (the “start” command) or from the control algorithm
(“spinning motor caught”).

We want to stress, that this is only a simple example. Advanced frequency
converters can be used in a large number of applications and have a high degree of
complexity.> For our company’s products the number of “modes of steady-state
operation” is between ten and twenty, the number of the external events is at the same
scale, and the number of internal events a bit higher. To adapt the frequency converter
to the motor or the application, the user configures it, by applying values or choices to
about 150 configuration items (called “parameters”)

The Two-Part Architectural Model

As part of our first steps in developing the product family software architecture, that

will be the basis for our future products, we have formulated a model, that we have

called the “the two-part architectural model”. Here is a very short description of this
model:

e One part is the part of the system that is I
responsible for the continuous data processing,
e.g. process control and measurement.

e The other part is the part of the system
responsible for handling events - occurring
asynchronously with the continuous data Delivers | Selects
processing. (The configuration data for the Eventsto | Controller
system is also placed here since configuration
changes is event controlled.)

e The event-controlled part configures
(parameterises) the individual algorithms in the
continuous data processing part, but also
determines which one of the algorithms has to
be the active control algorithm. On the other hand the continuous data processing
part can produce events that have to be handled in the event-controlled part.

Event Controlled Part

A

Parameterises

v v
Continuous Processing Part

Contains several control or
Output algorithms

The continuous processing part contains the hardware and software controlling the
motor in the “modes of steady-state operation”. In the software case the processing is

3 As an example the software for the VLT® 5000 series of frequency converter consists of
approx. 150.000 lines of C-code. Beside a Motorola MC68331 micro controller the
computingshardwareydesignrissbasedsonpansASIC, which - measured by the number of gates -
has a complexity as an 80386 CPU.

A Two-Part Architectural Model as Basis for Frequency Converter Product Families 33

handled by periodically activated software, driven by periodic interrupts - since no
real continuous (analogue) processing can happen in software.

Where we have tried to apply it, we have found, that it is fruitful to use the
process-control model [2] to describe each of the “modes of steady-state operation”.
When we tried to make a use case model for our system, we had problems making use
cases for the continuous processing parts of it. Later we found, that a description
according to the process-control model actually could “play the role” of a use case.

Some of the control problems we have are simple open-loop problems, but most of
them are closed-loop problems, either feedback or feed-forward.

Looking at the internals of the control algorithms (the controller part of each of the
process control problems), we have found, that this algorithm normally has a simple
dataflow structure, which can be described using the “Pipes and Filters” style.

A constraint, that the continuous processing part must handle, is that when
replacing one control/output algorithm with another, there normally is a demand for
“bumpless transfer”, i.e. as smooth a shift as possible from one algorithm to another,
in terms of disturbances on the motor shaft.

The event-controlled part is responsible for high-level motor control, i.e. how to
safely bring the motor from one steady situation to another — both situations that the
user recognises as steady — based on the events it receives. It is important to assure,
that the system is safe, i.e. no obscure combination of events will make it unsafe.

To illustrate the complexity of this, we can mention, that in the system we
currently have on the market the dominating event handling is described in a state-
event matrix with approx. 60 states and 40 events.

Fan Control Revisited

To make it concrete we will illustrate the two-part model with the fan-control
application described above.

Disturbances: heat production, heat loss, temperature outside, etc

Controlled
: Manipulated —— variable:
Setpoint: variables: " . : room temlperature
desired frequency+ otor + fan + —»
temperature | Controller: | voltage | room
| VLT® |

Feedback: measured
room temperature

Fig. 2. Closed loop feedback process control of room temperature

The process-control model [2] - in this case a closed loop control — is shown with
the relevant terms for this application.

34 H.P. Jepsen and F. Nielsen

The responsibility of the software required for this application, i.e. the internal
structure of the “Controller: VLT” “bubble”, is shown on the figure below as a block
diagram where the data flow structure is easily recognised.

u
Seipoint Sotpoin] [TiFrequency)
sgnel | Sutpoint |velus L] 1] Frequenay | T | Guat |, 1] Mesomanon | 1| vomge UM "
—~ - —ul -+ Frequeney » m -5 - i
Saleiuman oirafio Pypons Linwte Damping [7| oslaulstion Contred | U (Vohage}
ot &
ppclatn |
Feadbwck [w—
alug Fesctback nignal
Calousiation

Fig. 3. Block diagram of the internals of the controller in fig. 2

Let us add a few comments to some of the processing blocks on figure 3. The four
blocks “Frequency Bypass” to “Resonance Damping” do possibly change the desired
output frequency, based on configuration values given by the user (e.g. “Ramp” will
limit the changes (slope) in the output frequency to a value, set by the user). “Inverter
Control” (implemented in a application specific chip (ASIC)) is a “continuous”
production of a voltage vector, which has the desired amplitude and frequency.

For the “catch spinning motor” case, a diagram similar to figure 2 (a feed-forward
diagram however) and also a block diagram similar to figure 3 can be made.

We are now ready to examine the two-part model introduced above by looking at a
very simplified “picture” of the internals of a frequency converter.

RS- eal
485 serial line | ocal user
!

interface interface

[y stop- 4

Ram- bra. (':
Event-Controlled

Digital . ¢ Motor
inguts c o) R g
C «--{ Configuration @
[y .
c Part

Continuous Data
Processing Part

Setpoint v v
from Set- . :
RS485 | point Slip : By- N Flre.q Inverter
J-Gf comp. ' pass Limits Control
o calc l
Feed * H *
Analog eed- . : :
inputs back * PID o] c c
calc
LY LY
[[

Fig. 4. Architecture view of frequency converter software - very simplified

The part below the dashed line represents the part of the system that is responsible
for the continuous data processing, e.g. process control and measurement. In a given
situation the data is flowing through a subset of the “blocks”. The actual subset of
blocks is given by certain setting of the “switches”.

A Two-Part Architectural Model as Basis for Frequency Converter Product Families 35

The part above the dashed line represents the part of the system responsible for
handling events occurring asynchronously with the continuous data processing.

The event-controlled part configures (parameterises) the “blocks” in the continuous
data processing part (represented with the arrows marked “C” to the blocks), but also
determines the signal path in this part (represented with the arrows to the switches).
On the other hand the continuous data processing part can produce events that have to
be handled in the event-controlled part (represented with the up-arrows to the state-
chart block).

To show the mapping of frequency converter-software required for the fan
application onto the two-part architecture we will revisit the scenario above: Initially
the motor is coasted and the fan is wind milling. When the event-controlled part of the
frequency converter receives a start command from e.g. the digital inputs, it sets the
switches in the continuous part to perform an algorithm, that we call “catch spinning
motor”’. Whenever this algorithm has detected the motor speed and adjusted its output
to the motor, we have reached a situation where the frequency converter is controlling
the motor. The algorithm sends an event to the event-controlled part with this
information. The event-controlled part then changes the settings of the continuous
part to perform a “process closed loop” algorithm.

Is the Two-Part Model an Architectural Style —
Rather Than a Model?

The two-part model described above builds on and encapsulates several architectural
styles. The continuous processing part contains multiple continuous data processing
algorithms, and in case they are control loop algorithms they can be described
according to the process control architectural style. Further each of these algorithms
can be divided in components that are connected according to pipes and filters style.
Finally the event-controlled part encapsulates a state-based control style.

Why not rely just on the classical process control architectural style? The process
control architectural style describes a single process control situation, and does this
very well. However many systems must be able to handle a number of these process
control situations, and when shifting between these, there often is a demand for
“bumpless transfer”. The two-part model tries to cover multiple controllers and
bumpless transfer — handled by continuous processing part. Further “continuous data
processing” does not have to be process control. Measurement is another example.
Other types of continuous data processing are also covered.

The classical process control architectural style contains handling of discrete
events. We have however chosen to place the handling of events external to the
process control algorithms. The reason for this is that we believe, this gives us a better
overview of the system.

A question that we have asked ourselves several times is: Is the two-part model
really an architectural style? Is it possible to define “a vocabulary of components and
connector types, and a set of constraints on how they can be combined [2]”?

36 H.P. Jepsen and F. Nielsen

Elements of the Concrete Architecture

Now we will describe, how we have realised some central parts of this model, namely

e how to have multiple process controllers or other continuous processing
algorithms as part of continuous processing part,

e how the event-controlled part configures the continuous processing part and

e how bumpless transfer is handled.

First - inspired by the Strategy design pattern - the process controllers or other
continuous processing algorithms are implemented as subclasses of an abstract class
named OutputController. The actual algorithm behaviour is implemented by the
method generateOutput.

Evant Controlled Pant Continuous Dala Processing Part |
MotorManager MotorOutputGeneraior Timer
setactiveController() t::l
handisEven(} generatahotorOutput()
? theActiveOutputcontraltar
OutpuiController (abstract) Pwmbsic
» | generateOutpul()
| dbya 1. p N autput()
staternachine generatell(): Valtage
‘activate()
deactivataf)
SpaedOpenLocpController SpeedClosadloopCantroliar
genarateF{): Frequency generataF(): Fraquancy
generatel{): Voltage generateU(): Voltage

Fig. 5. Package diagram for central parts of the model

The method generateMotorOutput in the class MotorOutputGenerator will
be activated periodically by a timer interrupt every 2 ms. This function will delegate
the generation of motor output data to the generateOutput operation of the current
active output controller object.

MotorOutputGenerator: :generateMotorOutput ()

{

/] .
theActiveOutputController->generateOutput () ;
/] .

}

The generateOutput operation calculates the control parameters and sends
them to the ASIC controlling the motor.

ol Lalu Zyl_ﬂbl

A Two-Part Architectural Model as Basis for Frequency Converter Product Families 37

OutputController: :generateOutput ()

{

function

frequency= generateF();// pure virtual

voltage= generateU(); // pure virtual function
thePwmAsic->output (frequency, voltage) ;

}

The class MotorManager receives the events relevant to motor control and
determines which of the outputcontroller-objects has to be the current
outputcontroller. This class implements a finite state machine. Whenever the
MotorManager wants to set another outputcontroller active, it calls the
setActiveController method in MotorOutputGenerator with the new
OutputController object as parameter.

The internals of the method MotorOutputGenerator: :setActiveController
exposes the chosen solution to fulfil the “bumpless transfer” requirement. The
solution was to enhance the standard Strategy pattern with functionality to enable this
bumpless transfer between the operation modes by implementing two additional
operations activate and deactivate in the OutputController class.

MotorOutputGenerator: :setActiveController
(OutputController: newController)

controllerInfo
= theActiveOutputController->deactivate() ;
theActiveOutputController= newController;
theActiveOutputController-
>activate (controllerInfo) ;

}

The current controller is deactivated and the returned information is used to
initialise the new controller object, which starts with the same conditions as the
previous controller.

Benefits

It is our experience, that the two-part model compared to our former approach is
beneficial with respect to several of the design evaluation criteria mentioned in [3],
namely “separation of concerns and locality”, “perspicuity of design” and
“abstraction power”.

In our former software the event handling and output computation were
intermixed. One of the drawbacks was that it was difficult to understand and test the
individual output control algorithms.

In the new architecture the focus on “the system’s operational modes and the
conditions that cause transitions from one state to another’[3] has been localized in
the.event-controlledpart-—Separatedfrom this and localized in the continuous
processing part is the focus on the behaviour of the individual output control

38 H.P. Jepsen and F. Nielsen

algorithms. This also leads to a higher degree of reuse, since the output control
algorithms tend to be unchanged in different products utilising the same inverter
control hardware.

When looking at a specific functionality, the clear cut between event-handling and
continuous behaviour has made it easy to determine in which part of the model, the
functionality should be placed.

The two-part model has given raise to a vocabulary (OutputController,
Setpoint, MotorManager, etc), which makes it easier for the developers to
understand and make additions to our architecture.

References

1. The Centre for Object Technology (COT) is a three-year project concerned with research,
application and implementation of object technology in Danish companies. The project is
financially supported by The Danish National Centre for IT-Research (CIT) and the Danish
Ministry of Industry. (www.cit.dk/COT)

2. Mary Shaw and David Garlan: Software Architecture: Perspective of an Emerging
Discipline. Prentice-Hall, 1996.

3. Mary Shaw: Comparing Architectural Design Styles. IEEE Software, November 1995.
4. Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous

Processing Systems. Presented at Embedded Systems Conference, Europe 1999. A revised
version to appear in the April 2000 issue of Embedded Systems Programming, Europe.

ol LN ZJL?H

A Product Line Architecture for a Network
Product

Dewayne E Perry

Electrical and Computer Engineering
The University of Texas at Austin
Austin TX 78712 USA
+1 512 471 2050
perryQece.utexas.edu
www.ece.utexas.edu/ “perry/

ABSTRACT

Given a set of related (and existing) network products, the goal of this ar
chitectural exercise was to define a generic architecture that was sufficient to
encompass existing and future products in such a way as to satisfy the following
two requirements: 1) represent the range of products from single board, central
ized systems to multiple board, distributed systems; and 2) support dynamic
reconfigurability

We first describe the basic system abstractions and the typical organization
for these kinds of projects We then describe our generic architecture and show
how these two requirements have been met Our approach using late binding,
reflection, indirection and location transparency combines the two requirements
neatly into an interdependent solution though they could be easily separated
into independent ones

We then address the ubiquitous problem of how to deal with multiple di
mensions of organization In many types of systems there are several competing
ways in which the system might be organized We show how architectural styles
can be an effective mechanism for dealing with such issues as initialization and
exception handling in a uniform way across the system components

Finally, we summarize the lessons learned from this experience

0.1 Keywords

Software Architecture Case Study, Dynamic Reconfiguration, Distribution Free
Architecture, Architecture Styles, Multiple Dimensions of Organization

1 Introduction
This study represents a snapshot in the process of constructing a generic archi
tecture for a product line of network communications equipment The intent of

chitecture for the next generation of

39-52, 2000

40 D.E. Perry

Originating Switch Destination
Port SN Fabric . Port

Fig. 1. Basic Abstraction: Connection. A connection consists of an originating
port connected via a switch fabric to a destination port

products in this domain using the existing set of products as the basis for that
effort

The project began in an unusual way: the software architecture team came
to research looking for help with their project They had the domain expertise
for the network product as well as experience as architects and system builders I
had experience as a software designer and architect in a variety of domains (but
not this one) as well as research expertise in software architecture in general and
product line architectures in particular The result was a fruitful collaboration
that lasted about 9 months

Several caveats are in order before we proceed to discuss the issues and their
solutions

First, we do not describe the complete architecture Instead, we concentrate
only on the critical issues relevant to the product line and the implications
of these issues

Second, we present only enough of the domain specific architecture to provide
an appropriate context for the part of the architecture and the issues we focus
on

Third, we address only three architectural issues and describe several archi

tectural techniques that solve these issues in interesting ways

Fourth, we do not here discuss issues of analysis such as performance The
architects already did that very well and, as a researcher, that was not where
my expertise was applicable (it was in the areas of basic abstractions and
generic descriptions) The primary performance issue related to the discus

sion below was about the efficiency of current commercially ORBs the
one selected appeared to satisfy the required constraints

Fifth and finally, we do not provide a full evaluation of the architecture (for
example, how well did it work in the end) primarily because, for a variety of
reasons, the project was not completed We do, however, offer the positive
consensus of the project architects and their satisfaction with the resulting

ol Lalu Zyl_ﬂbl

A Product Line Architecture for a Network Product 41

Connections Connection Connection
Lines ___|Controller| | Manager | __| Services
Networks o e i
Switches
Craft/Debug

Fig. 2. Basic Hardware/Software System: counsists of four logical elements: con
nections, controllers, connection manager and connection services

We first provide the context for the study (the product line domain, the
current and desired states of the product line, and a basic view of the products)
We then explore the implications of the selected system goals and what is needed
at the architectural level to satisfy these goals On this basis, we the describe
our architectural solutions and the motivation behind our choices Finally, we
summarize what we have done and lessons we learned in the process

2 Product Domain

The product line consists of network communication products that are hard
ware event driven, real time embedded systems They have high reliability and
integrity constraints and as such must be fault tolerant and fault recoverable
Since they must operate in a variety of physical environments, they are hard
ened as well

These products are located somewhere between the house and the network
switch They may sit on the side of a building or on some other outside loca
tion (for example, a telephone pole), or partly there and partly near a network
switch, depending on how complicated the product is (that is, depending on the
complexity of the services provided and the number of network lines handled)

The current state of the products in this product line is that each one is built
to a customer’s specifications Evolution of these products consists of building
both the hardware and software for new configurations

Central to a satisfactory architecture are the fundamental domain abstrac
tions They provide the basic organizing principles Here the key abstraction is
that of a connection A connection consists of an originating communications
line port connected through a switch fabric (appropriate for the type of network
service provided) to a destination port The connections range from static ones
(which once made remain in existence until the lines or devices attached to the
ports are removed) to dynamic ones (which range from simple to very complex

helr eXlStenCe) see IigUIe].

42 D.E. Perry

Service Layer
(Connection Services)

A
Y

Network Layer
(Connection Manager)
A

Y
Equipment Layer
(Controller and Connections)

Fig. 3. Typical Domain-Specific Architecture: a structure of three layers consis
tent with the standard network model

The typical system structure for these products (see Figure 2) consists of a
set of connections such as communication lines, switches, other network connec
tions, and craft and debugging interfaces These devices have various appropriate
controllers that are handled by a connection manager which establishes and re
moves connections according to hardware control events and coordinates the
services required to support the connections

Figure 3 shows a typical architecture for such network communication prod
ucts layered into service, network and equipment layers Within each layer are
the appropriate components for the functionality relevant to that layer

3 Basic System Goals

The basic requirements for the product line architecture we seek are:

Requirement, 1 To cover the large set of diverse product instances that cur
rently exist and that may be desired in the future

Requirement, 2 To support dynamic reconfiguration so that the products
existing in the field can evolve as demands change for new and different
kinds of communication

Thus the desired state of the product line is that products can be reconfig
ured as needed with as little disruption as possible (but not requiring continuous
service) For the hardware, this entails common interfaces for the various com
munication devices and plug compatible components This part of the project
was addressed by the hardware designers and architects For the software, this
entails a generic architecture for the complete set of products and software sup
port for dynamic reconfiguration of the system This part is what we addressed

The first question then is how do we create a generic architecture that covers
the entire range of products in the product line that is, how do we satisfy re

imple connection systems that consist
: d I
" o

A Product Line Architecture for a Network Product 43

N
Check CC

\

G o]

RP

RG

A

RM

Fig. 4. Reconfiguration: Reconfiguration Generation is shown in detail: new archi
tectural configuration (NC), check consistency and completeness (Check CC), minimize
configuration (CMin), reconfiguration package (RP), and current configuration (CC) ;
Reconfiguration Management (RM) is shown in detail in figure 5

of a processor, associated controllers and devices, to complex connection systems
that consist of multiple processors, associated controllers and devices which may
be distributed over several locations

The main question is how do we handle this range of variability in component
placement and interaction? If we address the issue of distribution at the archi
tectural level, then that implies that distribution is a characteristic of all the
instances What then do we do with simpler systems? A separate architecture
for each different class of system defeats the goal of a single generic architecture
for the entire product line

One answer to this problem of variability is to create a distribution inde
pendent architecture [4] (requirement 1 1) and thus bury the handling of the
distribution issues down into the design and implementation layers of the sys
tem In this way, the distribution of components is not an architectural issue

However, this decision does have significant implications at the architectural
level about how the issues of distribution are to be solved First, the system
needs a model of itself that can be used by the appropriate components that
must deal with issues of distribution For example, the component handling
system commands and requests must know where the components are located
in order to schedule and invoke them Thus, second, we need a command broker
that provides location transparent communication, that is configurable, that is
priority based and that is small and fast So not only do we get a view of

an issue, we get a component view of
+*
oL A |_ih|

44 D.E. Perry

RM

SM

Fig. 5. Reconfiguration Components: System Model (SM), System Data (SD),
and Reconfiguration Manager (RM) The dotted line separates the domain specific part
from the reconfiguration and distribution independence parts of the architecture

communication where distribution is not an issue either Finally, the components
need to be location independent in order to be useful across the entire range of
products

To satisfy requirement 2 for dynamic reconfiguration, it is necessary only to
minimize down time We do not need to provide continuous service However,
we need to be able to reconfigure the system in situ in any number of ways from
merely replacing line cards to adding significantly to the size and complexity
of a system (for example, changing a simple system into a complex distributed
one) in the hardware and from changing connection types to adding and deleting
services in the software

As with the issue of distribution, reconfigurability requires a model of the
system and its resources, and obviously, a reconfiguration manager that directs
the entire reconfiguration process both systematically and reliably For this to
work properly, the components have to have certain properties akin to location
independence for a distribution free system In this case, we need configurable
components We shall see below that these necessary properties can be concisely
described in an architectural style [1]

4 Architectural Organization

By and large, a product line architecture is the result of pulling together var
ious existing systems into a coherent set of products It is essentially a legacy
endeavor: begin with existing systems and generalize into a product line There
are of course exceptions, but in this case the products preceded the product line
The appropriate place to start considering the generic architecture is to look

1se we drew on the experience of two
*b *
ol af |_l.|> |

A Product Line Architecture for a Network Product 45

teams for two different products and use their experience to guide us in our
decisions

As in many complex systems, there are multiple ways of organizing [2] both
the functionality and the various ways of supporting nonfunctional properties In
this case, we see two more or less orthogonal dimensions of organization: system
objects and system functionality System objects reflect the basic hardware ori
entation of these systems: packs, slots, protection groups, cables, lines, switches,
etc System functionalities reflect the things that the system does: configuration,
connection, fault handling, protection, synchronization, initialization, recovery,
etc

Given the two dimensions, the strategy in the two developments was to orga
nize along one dimension and distribute the other throughout that dimension’s
components In the one case, they chose the system object dimension, in the
other they chose the system functionality dimension In the former, the system
functionality is distributed across the system objects for example, each sys
tem object takes care of its own initialization, fault tolerance, etc In the latter,
the handling of the various system objects is distributed throughout the sys
tem functions for example, initialization handles the initialization for all the
objects in the system

Both groups felt their solutions were unsatisfactory and were going to choose
the other dimension on their next development

Our strategy then was to take a hybrid approach: choose the components that
are considered to be central at the architectural level and then distribute the
others throughout those components a mix and match approach The question
then is how to gain consistency for the secondary components that get distributed
over the architectural components We illustrate the use of architectural styles
as a solution to this problem in two interesting cases below

5 Architectural Solution

We discuss our solutions to the issues we have raised and show how these differ
ent solutions fit together to resolve these issues in interesting ways We discuss
first the architectural components needed to support dynamic reconfigurability
We then discuss how distribution independence can be integrated with recon
figurability We then delineate the general shape of the domain specific part of
the generic architecture and describe how the entire architecture fits together
We then discuss the two primary connectors: one for reconfiguration and one for
system execution Finally, we present two architectural styles to illustrate the
distribution of the secondary dimension objects across the primary dimension of
organization

5.1 Reconfiguration (Requirement 2)

Reconfiguration is split into two parts: reconfiguration generation and reconfig

generator is outside the architecture

46 D.E. Perry

SM

Fig. 6. Distribution Independence Components: System Model (SM), System
Data (SD), and Command Broker (CB)

of the system and ensures two primary requirements: first (requirement 2 1),
that the reconfiguration constraints for completeness and consistency of a con
figuration are satisfied; second (requirement 2 2), that the configured system is
minimal [3], a requirement due to both space and time limitations

The question arises then as to where this part of reconfiguration should be
Given the space and economic considerations of the systems, we chose to have the
consistency checking and reconfiguration minimization done outside the bounds
of the system architecture

In Figure 4, a new architectural configuration (NC) is created by combin
ing new components from software development (if there are any) with existing
assets and passing them to Reconfiguration Generation (RG) The new con
figuration is then checked for consistency and completeness (Check CC) Once
it is established that those constraints are satisfied, the new configuration is
compared against the current configuration to to determine which architectural
components need to be added and deleted (C Min) The result is a Reconfig
uration Package (RP) which is passed to the Reconfiguration Manager (RM)
containing the instructions for dynamically reconfiguring the software part of
the system

To satisfy requirement 2 for system reconfigurability, we have the three com
ponents illustrated in Figure 5: the reconfiguration manager (RM), the system
model (SM) and the system provisioning data (SD)

The system model and system data provide a logical model of the system, the
logical to physical mapping of the various elements in the system configuration,
and priority and timing constraints that have to be met in the scheduling and
execution of system functions

The reconfiguration manager directs the termination of components to be
removed or replaced, performs the component deletion, addition or replacement,

ping in the system model, and handles
: a d I
" o

A Product Line Architecture for a Network Product 47

em | | es | (o)

Fig. 7. Domain-Specific Components: Connection Manager (CM), Connection
Services (CS), Dynamic Data (DD), Connection Controller (CC), and Connection De
vices (CD)

startup and reinitialization of new and existing components Special care has
to be taken in the construction of the reconfiguration manager so that it can
properly manage self replacement, just as special care has to be taken in any
major restructuring of the hardware and software

5.2 Distribution Independence (Requirement 1.1)

For the satisfaction of the distribution independence requirements, we have the
three components illustrated in Figure 6: the command broker (CB), the system
model (SM) and the system provisioning data (SD) Note that the system model
and the system provisioning data are the same as in the reconfiguration solution

The command broker uses the system model and system provisioning data
to drive its operation scheduling and invocation System commands are made in
terms of logical entities and the logical to physical mapping is what determines
where the appropriate component is and how to schedule it and communicate
with it

5.3 The Domain Specific Components

For the domain specific part of the architecture we have chosen as the basic ar
chitectural elements the connection manager (CM), the integrity manager (IM),
the connection services component (CS), the dynamic data component (DD),
the connection controllers (CC), and the connection devices (CD) These compo
nents represent our choices for the architectural abstractions of both the critical
objects and the critical functionality necessary for our product line Of these,
the integrity manager is a logical component whose functionality is distributed

ol Lalu Zyl_ﬂbl

48 D.E. Perry

CM

Service Layer

Network Layer

Equipment Layer

Fig. 8. Domain Specific Component Decomposition. The traditional layering
forms the basis of the subarchitectures of several of the basic domain specific compo
nents Here we see the decomposition of the Connection Manager (CM)

While we have not used the typical network model as the primary organizing
principle for the architecture, it does come into play in defining the hierarchy
or decomposition of several of the basic domain specific system components: the
connection manager (Figure 8 illustrates this decomposition of this component),
the connection services, and the connection controller

5.4 Connectors

The reconfiguration interactions shown in Figure 9 illustrate how the reconfig
uration manager is intimately tied to both the system model and the system
provisioning data This part of the reconfiguration has to be handled with care
in the right order to result in a consistent system Further, the reconfiguration
manager interacts with itself and the entire configuration as well as the indi
vidual components of the system: terminate first, preserve data, reconfigure the
system model and system provisioning, and then reconfigure the components
There are integrity constraints on all of these interactions and connections

A logical software bus provides the primary connector amongst the system
components for both control and data access The manager of the bus is the
command broker There are other connectors as well, but they have not been
necessary for the exposition of the critical aspects of the generic architecture
There are both performance and reliability constraints that must be met by
this primary connector How to achieve these constraints was well within the
practicing architects expertize and as such is not, as performance issues in general

ntributions nor the scope of this paper
: a d I
" o

A Product Line Architecture for a Network Product 49

3 f | S

SM fo! :

%
: B R R

Fig. 9. Reconfiguration Connections. The reconfiguration manager is connected
in various ways to all the components in the system, including itself and the system as
a whole

5.5 Architectural Styles

So far we have delineated the primary architectural components derived from the
goals for reconfiguration or distribution independence, or from the two domain
specific dimensions of organization possible for this product For those domain
specific components not chosen, we provide architectural styles to ensure their
unform implementation across all the chosen components We present two such
styles as examples: a reconfigurable component style and an integrity manage
ment style

The reconfigurable component architectural style that must be adhered to
by all the reconfigurable components has the following constraints:

The component must be location independent

Initialization must provide facilities for start and restart, rebuilding dynamic
data, allocating resources, and initializing the component

Finalization must provide facilities for preserving dynamic data, releasing
resources, and terminating the component

We had also mentioned earlier that the integrity manager was a logical com
ponent that was distributed across all the architectural components As such
there is an integrity connector that hooks all the integrity management compo
nents together in handling exceptions and recovering from faults We had also
indicated that the part of the integrity management would be defined as an ar
chitectural style that all the system components had to adhere to This style is
defined as follows:

Recover when possible, otherwise reconfigure around the fault
Isolate a fault without impacting other components

ol Lalu Zyl_ﬂbl

50 D.E. Perry

RM CB CM Cs DD
N (I)

cc
S f
S B |
: | CD |

Fig. 10. Architectural Connections. A software bus provides the primary control
and data connectors among the system components

Provide mechanisms for inhibiting any action
Do not leave working components unavailable
Enable working in the presence of faults
Recover from single faults

Protect agains rolling recoveries

Collect and log appropriate information

Map exceptions to faults

Enable sequencing of recovery actions

Styles such as these function as requirements on architectural components to
guarantee a consistent and uniform set of component properties and behaviors

6 Summary and Lessons

We have explored several interesting techniques to achieve a generic architec
ture that satisfied both the domain specific requirements and the product line
architecture requirements

To delineate the appropriate domain specific components, we used a hy
brid approach in which we selected what we considered to be the critical el
ements from two orthogonal dimensions of organization We then defined archi
tectural styles to ensure the consistency of the secondary components distributed
throughout the primary components

We defined a logical software bus, subject to both performance and reliability
constraints, as a general connector among the components These constraints are
especially important where the underlying implementation and organization is
distributed across several independent physical components
To achieve the appropriate goals of the generic architecture covering a wide

enabling dynamic reconfiguration, we
: a d I
" o

A Product Line Architecture for a Network Product 51

chose a data driven, late binding, location transparent and reflective approach
This enabled us to solve both the problem of centralized and distributed systems
and the problem of reconfiguration with a set of shared and interdependent
components

As to lessons learned:

There are many ways to organize an architecture, even a domain specific
one Because there are multiple possible dimensions of organization, some
orthogonal, some interdependent, experience is a critical factor in the selec
tion of critical architectural elements, even when considering only functional,
much less when considering non functional, properties

It is important for any architecture, design or implementation to have ap
propriate and relevant abstractions to help in the organizing of a system
An example in this study is that of a connection as the central abstraction
Concentration on the concepts and abstractions from the problem domain
rather than the solution domain is critical to achieve these key abstractions
Properties such as distribution independence or platform independence are
extremely useful in creating a generic product line architecture They do,
however, come at a cost in terms of requiring architectural components to
implement the necessary properties of location transparency or platform
transparency

Architectural styles are an extremely useful mechanism in ensuring uniform
properties across architectural elements, especially for such considerations as
initialization, exception handling and fault recovery where local knowledge
is critical and isolated by various kinds of logical and physical boundaries
These styles define the requirements that the system components must sat
isfy to guarantee the properties and behaviors of the secondary components

Acknowledgements

Nancy Lee was my liaison with the architectural group on this project She helped
in many ways, not the least of which was making project data and documents
available for me to write up this case study The system architects on the project
as a whole were very tolerant of an outsider working with them However, we
achieved a good working relationship combining their domain expertize with
my research investigations together with a willingness to explore alternative
possibilities
Thanks also to Ric Holt at Waterloo for his comments and suggestions

References

1 Dewayne E Perry and Alexander L Wolf Foundations for the Study of Software
Architecture ACM SIGSOFT Software Engineering Notes, 17:4 (October 1992)
Shared Dependencies In Proceedings of the 6th Software Con

Germany, March 1996

52 DE. Perry

3 Dewayne E Perry Maintaining Minimal Consistent Configurations Position paper
for the 7th Software Configuration Management Workshop, Boston Massachusetts,
May 1997 Patent granted

4 Dewayne E Perry Generic Architecture Descriptions In ARES II Product Line
Architecture Workshop Proceedings, Los Palmas, Spain, February 1998

il LN ZJI—F.L'

Railway-Control Product Families: The Alcatel TAS
Platform Experience

Julio Mellado, Manuel Sierra, Ana Romera, and Juan C. Duefias!

Alcatel Transport Automation Systems Spain
Depto Ingenieria de Sistemas Telemadticos, Universidad Politécnica de Madrid
{ julio.mellado, manuel.sierra, airomera }@alcatel.es,
jcduenas@dit.upm.es

Abstract. Railway-control systems must cope with strict dependability
requirements. Typically, a product or installation is composed by several
applications, different operating systems, and a number of hardware pieces. The
range of combinations is large and thus the range of products in the family. In
order to keep this figure small, handle the development process efficiently
(unavoidably delayed by the validation efforts required) and to isolate software
and hardware elements, Alcatel Transport Automation Systems (TAS) took a
strategic decision: to choose an operating system able to hide hardware
variability, and provided by a third party. This paper describes the concept of
product family used by Alcatel TAS, organized around an operational platform
for applications in the product line, reports the experience carried out in Alcatel
Spain, in porting existing railway control applications to the Alcatel TAS
Platform (an operating system developed by Alcatel) and discusses some
advantages of this approach.

Introduction

Railway-control systems form an application domain characterised by these facts:

e dependability requirements such as safety, reliability, availability and
responsiveness are the most important, and are regulated by governmental
authorities. Failures could lead to human life losses.

e there is a great diversity of existing systems already working, since these control
systems are embedded in a large network system (the railway system), each of its
parts evolving and ageing at different speeds. The control applications must cope
with a large number of different hardware elements.

e products have a long life span (more than 20 years), so changes and updates must
be done incrementally.

! The work of Juan C. Duefias has been partially developed in the
the project "Engineering Software Architectures, Processes and
Platforms for System-Families" (ESAPS) ITEA 99005/Eureka 2023,
and has also been partially funded by Spanish CICYT under the
project "Integrated development for distributed embedded systems".

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 53-62, 2000.
© Springer-Verlag Betlin Heidelberg 2000

54 J. Mellado et al.

Examples of railway-control systems are the following:

e Interlocking Control Systems. These systems control the train movements in a
single station. Their main goal is to guarantee that the trains move within the
station safely and to avoid the risk of collision. See [6] for an exhaustive
description of products from different companies.

e Traffic Control Systems. They survey the railway traffic in a whole line. Their
main goal is to schedule the traffic in order to minimise the delays.

e Automatic Train Protection Systems: They control the speed of trains according to
the status of the track signals.

e Train Position Detection Systems: Axle counters.

Many of the current products in this market are reaching the end of their life. The
key reasons for this fact are their inability to compete with the growing demands of
market (in quality/price relationship, performance, commercial criteria), and the
decreasing availability on specific hardware components (some of them are partially
obsolete or surpassed) [5]. Thus, for example, software-controlled electronic systems
are replacing electro-mechanical ones since years, due to their flexibility, lower price
and easier maintenance. The operating systems in the control part were usually tightly
coupled to the hardware platform, so most of them are proprietary [6].

In this article we describe the general requirements of the railway-control systems
domain. Then we describe the TAS Platform and how it satisfies the needs of railway-
control applications. Finally, we show how the TAS Platform concept works in
practice describing the experience of a real project. The TAS Platform operating
system is the basis for all the Alcatel family of railway-control products, regardless
the hardware they are operating on top.

Requirements

There are several requirements shared by all the products in the railway-control
domain. Some of them originate from customers: since failures in the system can lead
to severe damages and loss of human lives, the system itself becomes a safety critical
application [2]. So, for example, the system must be able to detect malfunctions and
enter a safe state in that case (fail-safe systems). Obviously, time constraints are very
strict for these reactions. Another important requirement is reliability: the system
must work twenty four hours a day, seven days a week.

The railway-control systems must fulfil specific safety standards. Inside the
European Union, the CENELEC [3] Norm Set is the main standard for these systems.
This norm classifies the systems according to five “integrity levels”, each one with
different safety requirements. Every system working in a real installation needs a
customer validation. The possibilities for optimisation of the validation effort have
increased due to the ‘“‘cross-acceptance” principle within the European Union. A
railway administration can accept a system (or a part of it such as the hardware or the
operating system) validated by another European administration.

Redundancy has been chosen as the main strategy to ensure availability
requirements. The configurations of several processors working in parallel and
synchronising to compare the values of their inputs, their outputs and some of their
internal dataare typical inthistdomain In "two out of two" configurations

Railway-Control Product Families: The Alcatel TAS Platform Experience 55

(abbreviated 2002), two processors are working together, and the safe state is entered
if their results are different. In "two out of three" (abbreviated 2003) configurations, if
a processor does not agree with the other two, it is disconnected. Redundancy is not
only applied to the processor but to the hardware links with the external equipment.
The communication channels are typically doubled, although a “One Channel Safe
Transmission Protocol” has been accepted in the CENELEC Standard recently. Even
software is made redundant: several implementations of algorithms with the same
functionality are running on different processors. Choosing the degree of redundancy,
and which elements will be duplicated, leads to different products in the product line.

Another set of requirements depend on the environment where the railway-control
system will operate: each customer (railway administration) has specific
requirements, such as different signalling rules, different external equipment, et
cetera. Companies present in more than one country have to deal with these
differences, adapting their products to the customer needs or developing in each
national unit products targeted to specific markets, which is inefficient in terms of
effort and cost.

Maintainability in the long term is also important: usually, railway control systems
last for many years. In order to improve the functionality of the systems, hardware
updates are necessary. But these updates should have a minimum impact in the
application software. The two main reasons to avoid changes to the software are: the
application internal complexity and the cost of validating the changes made.

And the last, but not least, are the economical requirements. Profitability of a
certain product or product line depends not only on their quality, but on issues like
"time to market", and, even more important, on the product portfolio. This is tightly
related with the cost reduction of the development by using plugable components for
either hardware and software parts. Reusing as much as possible of the existing
systems in the new ones, and incorporating commercial and well-proven technology
are good approaches to be competitive.

Concept of the TAS Platform

The TAS Platform is an operating system that has gathered the previous work done in
Alcatel with the AEOS Operating System. The first goal of the TAS Platform is to
serve as an standard basis for the whole Alcatel TAS family of products. Another
main goal is to make the Alcatel TAS software applications independent from the
hardware. An important point is that the TAS Platform has been developed as the
result of the experience with the existing systems; this made visible the need of
identification of commonalities and variabilities in the whole family of products, the
need to factor out the common part (mainly the TAS Platform), and also the need to
reduce its development effort.

The TAS Platform affects the architecture of the systems that use it, and implicitly
is defining the architecture of a family of products. Using the terms defined by [8], it
can be described as a “variance-free architecture” in which the differences between
the products are not relevant from the architectural point of view. The TAS Platform
can also be considered as a market-oriented product rather than a customer-oriented
product, which is a typical characteristic.of a product family, as [4] points out.

56 J. Mellado et al.

The Figure 1 describes the generic architecture of all the systems that use the

Platform.
/ APPLICATION SOFTWARE \

ssssnnnnnnnnnnn; AP] sussssnssssnannnn:

Application Programming Interface

SYSTEM SOFTWARE
(middleware for communications and fault
tolerance sevices)

OPERATING SYSTEM KERNEL

HARDWARE
(CPU and 1/0; scaleable with respect to

performance, environmental conditions, and cost)/

Fig. 1. Basic System Architecture.

It is important to note that in this case, the "family of products" does not hold
different variants of the same system, with small changes to their functionality.
Rather, the main common characteristic of the products in the family is that all of
them belong in the same domain (and therefore share certain requirements, either
functional or not) and are able to operate on top of the same platform that satisfies
their common requirements. Thus, "family of products" is defined as the set of
applications in the domain that can be executed on a certain operational environment.
This environment is the Alcatel TAS Platform, which offers to the applications
complete safety mechanisms to operate and allows system redundancy (2002 and
2003) without changing the application software.

Certainly, this definition reveals the strong connection between the concept of
product line and the different ranking of requirements for different domains. One
reason to define "family of products" in this way is that dependability requirements
are much more important to cope with than pure functional ones; thus, validation
activities can take more effort than -for example- implementation tasks, so once the
main problem in the domain (guarantying dependability) is solved, populating the
family (porting more applications to the Platform) involves less effort and thus shorter
time to market.

The generic architectural schema that appears in the Figure 1 shows that
applications only see a software interface offered by the Platform, ignoring all the
underlying details. This API conforms to the standard POSIX [1] interface. The
approach, a common basis adaptable to different products, is similar to other
industrial experiences such as [7], but with the difference that no assumptions are
made about the application software architecture in the Platform. A reason for this is
that the TAS Platform is not only for the fully new developments made inside Alcatel
TAS, but also for the evolution of already existing systems.

Railway-Control Product Families: The Alcatel TAS Platform Experience 57

The "system software" box in the Figure 1 represents the Platform services. A
more detailed view of the system architecture is presented in Figure 2. For the
operating system kernel, a COTS ("commercial-of-the-shelf") has been chosen: the
Chorus real-time microkernel, produced by Sun Microsystems. The microkernel
approach provides a larger flexibility, since the kernel is composed by a flexible set of
interchangeable pieces that can be selected depending of the specific requirements of
products. Another COTS have been used to implement the TCP/IP and X.25
protocols.

With this basic architecture, and after domain analysis activities have been
performed, several points of variation are identified:

the internal communication mechanisms, encapsulated in the communication
system (CS). By means of using message queues, timers and signals, this module
makes possible that the application software runs on different processors
synchronously (all the processors do the same and have the same internal data). These
redundancy and location transparencies have to be configured depending on the
application requirements.

the fault tolerance mechanisms, encapsulated in the fault tolerance layer (FT), that
implements the safety requirements, collecting all the fault indications. It is
responsible for the consistency of the data between the different processors and the
recovery mechanisms. It is possible to configure different reactions for fault
indications.

USER POSIX
SPACE APPLICATION A ooy

‘_—.
o D

POSIX
/ INTERFACE

SYSTEM
SPACE

APPLICATION PROTOCOL
PROTOCOLS LAYER

/ / MICROKERNEL

LICATION HARDWARE
DRIVERS DRIVERS

HARDWARE APPLICATION
AT PLATFORM HARDWARE (VME BUS...)

Fig. 2. TAS Platform services structure.

The applications can fulfil their safety and availability requirements either using
the full services of the TAS Platform (contained mainly in CS and FT) or using only
the most basic ones (those in the microkernel). In the first case, the TAS Platform sees
the application as a set of tasks that communicate using message queues, and the
application does not care about the processor redundancy and error handling. In the
second one, the application has to deal with all the task error handling, the
communication between tasks, and the processor redundancy (guaranteeing that the
processors running in parallel are synchronous). The first approach means less effort
for the applications developers, that can concentrate on their specific problems after
assuring _that_the requirements_and_the architecture of their applications can be
supported by the TAS Platform. For example, in the interlocking systems, route

58 J. Mellado et al.

treatment is a very critical and complex problem at the application level, but has no
relation with the synchronisation among the replicated processors at all, which is a
typical task for the TAS Platform.

The TAS Platform implements the replica deterministic concept to assure the
safety execution in redundancy systems: 2002 and 2003. Redundancy systems are
composed of redundant tasks that contain the application software running in all the
processors of the system. The implementation of the concept ensures that all the
redundant tasks receive the same data from non-redundant task (those that only run in
one processor) or external systems, and that all of them task start from the same
points and at the same time. The implementation is based on the synchronisation of
redundant tasks of the application and the voting mechanism of the messages received
by these tasks.

The voting mechanisms are implemented in the FT layer and are configured by
application developers to run in 2002 or 2003 configurations. The 2002 voting
mechanism takes care about differences of two external messages and the possibility
that one of them could be lost. This case is a fault and the system stops. The 2003
voting mechanism expects three identical messages, but the system continues working
if two of messages are identical, establishing a majority vote among the three
messages expected.

Due to the concept of deterministic replica, the TAS Platform operating system
implements its own scheduler for the tasks of the application (redundant or not). The
application tasks use CS services to define the preemption points needed by the TAS
Platform scheduler and exchange data through message queues. These message
queues are POSIX message queues with, again, a voting mechanism.

The TAS Platform operating system provides mechanisms to use the multitasking
scheduler of the CHORUS microkernel that is also conform with the replica
deterministic concept. The scheduling units are logical groups of application tasks
(Taskset elements). The Taskset elements run concurrently, and all the application
tasks inside run in a replica deterministic way.

The hardware elements are encapsulated by means of drivers that lay within the
system space. In this case, the operational environment that is specified by the
customers determines the selection of hardware elements. As new hardware
components must be included in the system, new drivers are written.

As a conclusion, the TAS Platform is used in the whole Alcatel TAS family of
products due to its flexibility, adaptability, hardware independence, applicability to
different elements in the railway-control domain (there are working examples of
interlockings, axle counters, and automatic train protection systems), acceptance by
different railway customers in different countries (Austria, Spain, Canada, Germany,
Finland, etc.), and fulfilment of safety requirements.

Report of Experience. The Porting Project

A train control system for track sections supervision has been developed by Alcatel
TAS Spain to control small and medium-size railway stations. The application is
structured in severalmodules (see Figure,3), all of them programmed in ANSI C
language:

Railway-Control Product Families: The Alcatel TAS Platform Experience 59

MMI: man-machine-interface.

SIM (Simulator): software system that allows the simulation of field elements.

OS (Operating System): embedded operating system with a POSIX interface.

LD (Local Diagnosis): check module (only for development purposes).

CM (Control Module): includes supervision logic, operator command processing
and field data acquisition software.

& f@

links ‘ Serial links
Serial

Fig. 3. Application architecture.

The train control system application was chosen to be ported to the Alcatel TAS
Platform, in order to enhance its capabilities. This new system would be scaleable to
adapt at different line sizes, and modifiable to be easily ported to new hardware
platforms.

During the porting process, some changes have been done to integrate the
application onto the new operating system and to use Platform services. It is very
important to ensure that changes do not modify the current functionality, nor the
safety conditions of the product. Therefore all the procedures according CENELEC
EN 50126, 50129 and 50128 have to be considered.

The relationships between the application ported and TAS Platform are shown in
the Figure 5. The application uses the TAS Platform services (synchronisation and
voting) to assure a replica deterministic execution. Furthermore, the application
increases its performance with the concurrent execution of some tasks (interface tasks
with main application).

For the porting process the following steps have been performed:

1. Training a team of application software developers on the new TAS Platform
system, the new development environment and the special programming
characteristics for use of TAS Platform services. For this purpose, the experts of
the TAS Platform make design documentation available in side Alcatel TAS Spain.
It is important to note that the creation and dissemination of this documentation
within the company helps in the organisation of the internal "know-how", and to

60 J. Mellado et al.

codify the best practices. For example, the documentation includes an implicit
decision table for the design of the redundancy mechanisms.

2. Elaboration by the Spanish team of a system requirements specification of the train
control system to the TAS Platform.

‘ Ethernet links @
Ethernet links ,
]

Fig. 4. Application system based on TAS Platform.

3. Development of the first ported version, taking the main part of the already
available code and making the required changes. The programming language is in
both cases ANSI C. The operating system interface is POSIX on both cases, and
has not changed significantly. Additional modules have been written to manage
Ethernet-based communications instead of serial protocols. A new TAS Platform
Configuration, specific for the train control Application, has been created.

4. Testing of this first prototype with a set of well-defined test protocols used in the
train control Application system to validate the system functionality. Tests were
performed with simulators, fed with real system input data. The results obtained
were compared with the former one. The results of the tests were successful in all
cases.

Conclusions and Future Work

The train control system project has reached its objectives of delivering a new system
based on Alcatel TAS Platform. Besides, the project achieved these goals:

— Reuse of the existing software, maintaining all functionality.

— Increase reliability and scalability of the product.

Railway-Control Product Families: The Alcatel TAS Platform Experience 61

— Application software independent of hardware.

— Shorter time and lower cost development of the new product family.

After the development of the first version of the train control system on TAS
Platform, the future work is addressed to improve the functionality and the
performance of the new system, considering new hardware configurations.

Synchronisation

i

REPLICA 1 REPLICA 2 REPLICA 3

P
S|

i

Other Task Y\ __i
TASKSET
st. Interface™
TASKSET

Other Task ™ ____
TASKSET
st. Interface |
TASKSET

i

Other Task ™
TASKSET
st. InterfaceN
TASKSET

i

i

st. Interface™ _ |
TASKSET

i
i

st. Interface st. Interface
TASKSET TASKSET
ain Applicationy _ ! ain Application\ _ | ain Application\ _ |
TASKSET TASKSET TASKSET

|
:
;

essage essage
Queues Queues

essage
Queues

Voting Mechanisms

Fig. 5. Relationship between the Ported Application and the TAS Platform.

Acknowledgements

Ana Romera, Julio Mellado, Manuel Sierra wish to thank their employer, Alcatel TAS
Spain, for giving them the possibility of take part in this interesting and encouraging
project. The valuable support of TAS Platform Team, and the tremendous expertise of
his members has been a constant during all the project, making it possible to happen.
We thank all of them.

References

[1JANSII/IEEE Std 1003.1 and ISO/IEC 9945-1, Information Technology - Portable Operating
System Interface (POSIX ®) - Partl: System Application Interface (API) [C Language], 2nd
Edition, 1996

[2]Bowen, J., Isaksen, U. y Nissanke, N., (1997) System and Software Safety in Critical

Systems, Technical Report RUCS/97/TR/062/A, Reading University, Computer Science

ol Lalu Zyl_ﬂbl

62 J. Mellado et al.

[3]Comité Europeén de Normalisation Electrotechnique CENELEC (1997). prEN 50128,
Railway applications - Software for railway control and protection systems.

[4]Dolan, T. Weterings, R., Wortmann, J. C. (1998). Stakeholders in Software-System Family
Architectures. Development and Evolution of Software architectures for Product families.
Second International ESPRIT ARES Workshop, Las Palmas de Gran Canaria, Spain, 1998,
Proceedings. Springer Lecture Notes in Computer Science 1429.

[S]1Doppelbauer J., Lennartz K., Veider A., Warlitz J.,(1998). "Basisystem fiir signaltechnisch
sichere Anwendungen”, Signal+Draht 10/98, pp 8-12

[6]Maschek U (1997) Elektronische Stellwerke - ein internationaler Uberblick, Signal+Draht
03/97, pp 8-23

[7]Meekel, J. , Horton, T. B., Mellone, C. (1998). Architecting for Domain Variability.
Development and Evolution of Software architectures for Product families. Second
International ESPRIT ARES Workshop, Las Palmas de Gran Canaria, Spain, 1998,
Proceedings. Springer Lecture Notes in Computer Science 1429.

[8]Perry, D. E. (1998) Generic Architecture Descriptions for Product Lines. Development and
Evolution of Software architectures for Product families. Second International ESPRIT
ARES Workshop, Las Palmas de Gran Canaria, Spain, 1998, Proceedings. Springer Lecture
Notes in Computer Science 1429.

Discussion Report '"Business'' Session

Giinter Bockle

Siemens ZT SE
Otto Hahn Ring 6
D-81739 Minchen, Germany
Guenter.W.Boeckle@mchp.siemens.de

The “Business” session of the workshop covers the basic question to be answered

when a product line approach is adapted by an organisation:

e s it worth the effort? Will the product line approach really deliver the expected
benefits?

e What will the assets for reuse be so that these benefits can be achieved?

Two presentations showed two complementary methods to answer these questions.

The first shows a fast, simple method to determine the potential of a product-line

approach, which helps to achieve a fast decision, whether to apply this approach for a

certain set of products. The second shows a detailed method, which determines the

scope of a product line, and the benefit, which can be achieved by adopting the

product-line approach. A tool is presented which helps in determining the scope of the

product line.

The presentations lead to a lively discussion, which concentrated, on two major
topics:

e The tools and methods presented

e Why are we doing this kind of work — what is the difference between SW and other

products?

The domain potential analysis uses the standard analysis methods, however some
different ways to calculate the results so that the potential of a product line approach
with respect to the risk involved can be visualized. Similarly, PULSE-BEAT uses
standard economic analysis methods, extended and enhanced for product lines. There
are some more methods around, but those are too coarse-grained to deliver
sufficiently reliable results. For both methods the reliability of the results depends of
course on the reliability of the input used for their application.

This started a discussion about the fact that many organizations just do not have the
data, which are necessary for evaluating the potential of product lines and for scoping
them. However, this must not prevent this activity — one should start and use
guestimates where necessary! These are systematic and disciplined methods and they
will show what is missing and provide the way for structured analysis. Of course they
cannot replace measurement programs in organizations for providing the data, but
they can show what data is needed. Perhaps some people may see their creativity
impaired — but the application of such methods will get people organized so that they
can use their creativity in a planned and structured way. And after all: having no data
which can be used for deciding about a product line approach shows clearly that there
isssomethingswrongrinitherorganizationrandithat there is a need to improve!

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 63-64, 2000.
© Springer-Verlag Betlin Heidelberg 2000

64 G. Bockle

The models for investment to be applied for product line engineering cannot be
restricted to either linear or exponential models — both may be necessary, depending
on the particular product line, the health of the organization, and the political
conditions. Both, high-level analyses and detailed analyses are needed, but the results
are error-prone and have to be taken with a grain of salt. A factor of three should be
taken into account. However, the organization will learn and apply better
measurement methods — there are many examples of successful product line
engineering. And experience shows that even if there is a factor of two between
prediction and result, others will get attentive and will copy the methods and new
product lines will appear. But due to the vague input data and the fact that such
analyses are not well-known this still appears to many as kind of a black science.

This directed the discussion to the statement that we are not working in our own
field — we are specialists in information science and engineering but not economists or
business administrators! Why shouldn’t we leave this task to the experts? Well, these
experts do not understand the complexity of software and the difference from non-
software products; so we have to get engaged and address all topics, including
business and organizational issues. We have to interact with the rest of the world and
convince them. We can learn from the automobile industry where platform
technology is used to reduce time to market significantly. However, the design space
in the mechanical industry is more controllable, there is no direct translation to
software, e.g. because of the different ways to implement software. Another
difference is in the value of software; you cannot determine the value of software as
easily as that of mechanical parts. The value of a piece of software can change from
one moment to the next, there is no base value for financial calculations. It is not
possible to sell used software like used mechanical items, it just has no worth any
more. In mechanical systems the major cost is in production while in software it is in
specification.

But there are advantages in such differences; software can be upgraded in the field.
An example is that we can make an MP3 upgrade by just downloading new software.
Very profound changes of the market will occur, this is a great opportunity for us.
Even individual products may become product lines. Car manufacturers think about
such methods and events; what we need is a good business model for software.

PuLSE-BEAT — A Decision Support Tool for
Scoping Product Lines!

Klaus Schmid®, Michael Schank™®

*. Fraunhofer Institute for Experimental Software Engineering (IESE),
Sauerwiesen 6, D-67661 Kaiserslautern, Germany
Klaus.Schmid @iese.thg.de

*, University of Kaiserslautern, Computer Science Department
Michael @schank.de

Abstract. Determining the scope of a product line is a core activity in product
line development, as it has a major impact on the economic results of the project.
Only recently an approach was proposed that allows to base this decision
explicitly on a detailed analysis of the relevant business goals [2]. As the
approach requires gathering and evaluating a lot of data, tool support becomes
mandatory. In this paper, we describe the tool PuLSE-BEAT, which was
specifically developed to address this need.

1 Introduction

1.1 Motivation

Recently, software product lines have been accepted as a key approach for large scale
software reuse. While huge benefits are often associated with this approach (cf. [1]),
reaping them requires thorough planning and identification of the best opportunities.
This happens during the scoping phase of a product line project. Scoping consists of
identifying the most promising sub-domains relevant to the product line and, early on,
identifying those assets, which, when developed for reuse, provide the highest benefit.

The PuLSE™-method (Product Line Software Engineeringz, cf. [4]), which is an
approach to product line engineering developed at the Fraunhofer IESE, contains an
explicit scoping step, called PuLSE-Eco. In the following section, we will briefly
describe the approach used by PuLSE-Eco for performing scoping. A more detailed
description can be found in [2]. The specific approach taken by PuLSE-Eco for
determining the scope relies heavily on the thorough analysis of data describing the
benefits associated with making certain characteristics of the product line reusable.
While, initially, we performed this analysis by hand (i.e., using Excel™), we now
developed a tool for assisting this analysis. This tool is called PuLSE Basic Eco
Assistance Tool (PuLSE-BEAT). In this paper, we will concentrate on discussing the

1" This work has been partially funded by the ESAPS project (Eureka X! 2023 Programme, ITEA
project 99005).

2 PuLSEisa registered trademark of the Fraunhofer IESE

F. van der Linden (Ed.): IW-SAPF-3, LNCS 1951, pp. 65-75, 2000.

© Springer-Verlag Berlin Heidelberg 2000

66 K. Schmid and M. Schank

requirements for a successful scoping support tool and how PuLSE-BEAT satisfies
these requirements.

1.2 Related Work

Here, we will briefly describe other published scoping approaches. However, as these
approaches — to our knowledge — do not possess any specialized tool support (i.e., tool
support is on the level of non-specialized graphics and table management software),
we cannot directly compare the approaches on the tool level. Thus, we will restrict
ourselves to a comparison of the approaches:

Most work on the scoping issue, so far, has been done in domain engineering. In
particular, methods such as Synthesis [9] or Organizational Domain Modeling (ODM)
[10] introduced scoping approaches, but these remained on a rather abstract level.
Perhaps the most stringent approach for domain scoping is provided by the domain
scoping framework [7], but this approach fails to link the derivation of the scope
explicitly with the business goals. A major difference with PuLSE-Eco is also that this
approach is strongly based on the notion of a domain while ours is based on the notion
of precise products. This, we believe, is a major distinction that needs to be made in
order to truly address the business goals as they are usually centered around products.
The only scoping work we know of that is also based on the concept of a line of
products is the work by Withey [11]. However, this approach is restricted to the
business goals of maximizing the return on investment (ROI).

Besides the software-oriented approaches, also approaches from other disciplines
exist. Especially interesting here is the work by Robertson and Ulrich [8]. However,
while [8] is closest to our work, it still centers around a pre-defined set of criteria,
while our approach is open to a wide range of business goals.

Work on relating technical characteristics to external requirements is also relevant
in this context. Quality Function Deployment (QFD) is probably the most well-known
approach in this area [6]. Also the notion of a product map as we describe it here
shows some commonalities with the matrices used in QFD.

This paper is structured as follows: in the following section we introduce the
underlying scoping approach: PuLSE-Eco. Then in Section 3.1 we will give a
description of our tool and discuss how it lives up to the requirements that are set by
the method and its application context. In Section 3.2, we will then discuss some
additional features of the tool that simplify its application in the process. Section 4,
then briefly discusses an example for using the tool and Section 5 concludes.

A Decision Support Tool for Scoping Product Lines 67

2 The Scoping Method: PuL.SE-Eco

The PuLSE-Eco approach is described in detail in [2]. This approach aims at
identifying early on those characteristics that shall be directly supported by the product
line architecture (respectively the reuse infrastructure) in order to maximize the benefit
of the product line approach. As different organizations have different goals in
following a product line approach, the ability to flexibly incorporate these goals was a
key issue in the definition of the method. As high level business goals are too abstract
to use them directly for the decision making process they are refined into benefit and
characterization functions using a GQM-like approach [3] in the step develop
evaluation functions. The functions are derived in such a way that the benefit functions
can be expressed in terms of the characterization functions. Benefit functions capture a
certain kind of benefit (e.g., effort reduction) that can be gained by having a certain
characteristic within the scope of product line development (i.e., having its
functionality in a reusable form). Characterization functions in turn describe a certain
attribute of a product/characteristic pair (e.g., effort of developing a certain
characteristic in the context of a specific product). These characterization functions are
then used to explicitly define the benefit functions [S]. This derivation of benefit
functions and characterization functions from a business goal is captured in a
derivation table. These functions can be roughly equated with metrics in the GQM-
approach, where the two are related such that the characterization functions
correspond to directly (subjectively) measurable properties, while benefit functions

(system (stakeholder business
information information oals
| map out product | develop evaluation |
candidates functions
A 4 \ 4

product (benefit) (characte rization)
map functions functions
I —

A 4

(characltitsetnstlcs) characterize
roducts
documented
roduct ma|

v
benefit
analysis

scope definition
(product map)

process >
Produce/Consume

Figure 1. PuLSE-Eco process

68 K. Schmid and M. Schank

correspond to complex metrics the value of which can be computed using the
characterization functions.

The main visual device for organizing this information is the product map. This is a
matrix with the various characteristics that are relevant to products in the product line
on the left axis and the various products and the characterization functions on the top
(cf. Figure 2). When this table has been completely filled out, a numerical analysis can
be performed on the gathered data in order to identify an optimal scope definition.

Figure 1 gives a short overview of the PuLSE-Eco process. The first step is to
identify the characteristics that are relevant to the products in the product line. A
structured list is elicited from the stakeholders, existing systems, and the product plan.
Similarly a list of the systems potentially relevant to the product line must be
developed. These may be existing, future, or even hypothetical applications. Note, that
in order to perform this analysis we are explicitly looking at individual systems in the
product line and not at market segments or the like. The elicitation of this information
is performed in a structured manner in the step map out product candidates. As a result
also a list of the major functions relevant to the products in the product line is
developed.

Once this has been done, the main axes of the product map have been established.
Next, it is generally appropriate to identify which characteristics will be needed in
which product. For this usually a special characterization function called req is used.
Now, based on the business goals of the product line project, benefit functions are
derived, which operationalize the goals and describe the benefit of having a certain
characteristic inside the scope. The benefit functions in turn are described using
characterization functions. This is performed in the manner described above in the step
develop evaluation functions. After the operationalization of the goals has been
performed, the values for all characterization functions need to be gathered from the
stakeholders. This data elicitation is performed in the step characterize products. This
step is completely determined by the products and characteristics elicited previously
and by the characterization functions defined before. One way of enacting this step is
to simply give the tool to the stakeholders and ask them to enter this information.
Then, using the definition of the benefit functions, their values are computed and this is
then used as basis for deciding which characteristics to develop for reuse and which
ones not (benefit analysis). This step of deciding what to develop for reuse and what
not is called benefit analysis. It can be performed semi-automatically. All
computations for deriving the benefits of the characteristics are performed by the tool
and those characteristics where product lines can be expected to be beneficial relative
to a threshold are marked automatically. The threshold values need to be determined
based on the benefit functions. A typical way is to define the benefit functions in such a
way that they range from O to 1 and the break-even is at 0.5 (i.e., for a characteristic
that is evaluated to 0.5 there is no difference in developing it in a reusable or in a non-
reusable manner).

Now, PuLSE-BEAT supports three different scopes with successively higher
thresholds. The typical approach is to have these different scopes as possible
candidates, likely candidates, and strongely recommended candidates with thresholds
of 0.5, 0.6 (to add a risk premium), 0.75 (in this case a strong advantage for product

A Decision Support Tool for Scoping Product Lines 69

line development can be expected). However, as benefit functions are chosen
differently for each application and thresholds are relative to the selected benefit
functions, the thresholds may be needed to be adopted on a case by case basis. The tool
itself makes no assumptions about the threshold values, nor about their interpretation.
Its relevant at this point to observe that the benefit functions are defined such they are
monotonouos in the values of the characterization functions. Further, they are not
particularly sensitive to a single parameter. Thus with a spacing of the thresholds like
the one given above, a change of scope will not occur based on a single data error
except for true borderline cases. However, as technical relations may exist among the
individual characteristics which may go beyond the gathered information, the
proposed scope may need to be revisited by an expert anyway.

While it is not central to PuLSE-Eco, the same principles, that are applied for
determining the scope can also be used for selecting those applications that are best
suited for the product line. This form of product portfolio management is also
supported by PuLSE-BEAT.

3 The Scoping Tool: PuLSE-BEAT

3.1 Core Capabilities

Based on the description of PULSE-Eco given above some major requirements for tool
support can be derived:

* Support of the various workproducts and their interrelations

* Support all steps of the scoping process

* Easy to use for both domain experts and method experts

* Can be provided to customers at low cost

The approach relies on several different workproducts. Most important among them
is the product map, but also derivation tables for the benefit and characterization
functions are needed and detailed descriptions of the defined functions need to be
recorded. All these workproducts are heavily interrelated and these relationships need
to be managed.

Additionally, three different phases can be distinguished in the method: developing
the information, i.e., identifying characteristics and deriving characterization functions
(done by domain experts and product line experts); gathering the data (performed by
domain experts), and scoping (performed by product line experts). The tool is to be
applied in all three phases. Thus, it is necessary that the system runs on an easy to
access platform.

Based on these core requirements for the tool the decision was made to develop it
based on Excel™ using Visual Basic for Applications. Given the widespread
availability of Excel, we believe this platform will be available to all potential users.
Additionally, given the high reliance of the PuLSE-Eco approach on tabular notations
(product map, derivation tables, etc.) this allows to use directly the various Excel table
handling facilities, e.g., for printing and online-formatting, without any extra-cost.

70 K. Schmid and M. Schank

Given this environment, the decision was made to map the various workproducts to
worksheets, i.e., each one is implemented as a separate table. However, as all
worksheets are contained in one work-book, all information relating to a single
scoping project is always directly available and can, for example, be loaded with a
single command. Overall the documentation for a scoping project consists of the
following worksheets (actually the tool uses additional sheets for internal purposes,
however, their description is outside the scope of this paper):

* Product Map (external representation)
* Benefit functions: this table accumulates all the definitions for benefit functions
* Auxiliary functions: this table contains all the definitions for auxiliary functions

(Auxiliary functions can be sometimes introduced to map values among different

value ranges.)

» Characterization functions: this table aggregates all characterization functions
» Derivation table: for each refined goal one derivation table is generated

The tool provides consistency management and traceability between all these
worksheets. This is actually a difficult task as the same benefit or characterization
function may occur in the operationalization of several goals, but obviously they shall
appear in the product map only once, as data for them shall also be gathered only once.
This is also the underlying reason for having explicit worksheets that aggregate the
definitions of the various functions. These sheets are also used to keep track of how
often these functions are referenced. Thus, e.g., a characterization function is actually
removed from the product map only when the last reference to it is removed from a
derivation table.

Note, the distinction that is made between the external and internal representation of
the product map. The internal representation is never directly manipulated by hand,
thus it is not listed above. The reason for this distinction is to allow the tool users to
manipulate the data in a more intuitive form, that is, characterization functions can
actually be defined using arbitrary alphanumerical values, which are only internally
mapped onto numerical values for computation. This allows for example to describe
whether a certain feature is required in a specific product using X’ and *_’. While this
seems to be a simple feature it requires some effort to implement and it increases
readability of the product map considerably (cf. Figure 2). Additionally, this approach
simplifies the checking of input data.

Based on the provided data the tool can compute the benefit functions and based on
thresholds decide whether a certain characteristic belongs inside or outside of the
scope. This approach can also be used with the tool for deciding whether a certain
product should be considered part of the product line or not by refining product-related
goals into benefit functions and computing the benefit of having a certain product in
the product line.

3.2 Additional Features of PuLSE-BEAT

In the preceding section, we outlined the core requirements on a scoping tool and how
PuLSE-BEAT satisfies them. In this section, we will discuss some additional features
of the tool. While we think they are not vital to the tool’s usability, they substantially
simplify its usage in real world projects:

71

1nes

coping Product Li

Support Tool for S

1S10Nn

A Dec

dew jonpoad padods € Jo J0ysudaIg °7 3In3Iq

Apeay
i [| ey () =ieae: Eige () SlEgE: Y ()]e5e: e DR P ¥ AEWseOEUggy Y USUOR U jsOuneE e ey Y USUOIUsH) USUHnusziin Y uiaixa dely pnpoag nusuadner WAk H
6%
[E2
i
sploysanL aF
T =z Ec=zE £ $58(0 oIS JaNpO.d [enus £
3 53 8§ 3% B F S8A EER ER EER s8A £ | £ $98|2 UOR2S|ES JANRO.C IPEWOINY o
@ 2 xu 3 @ 2 2 ~ Z S50 uoRaS|as Jonpoad [enue [
8 m 3 m 8 m 4 N N ER BN RN 7 $92/2 UORIE(ES JANROMY ROy zr
g 228 2 2 2 = o | S58|2 U0RIE(9S NP0 [Enuel I
0o 8 0o @ o @ 3 oN ER EER ER ERNEE| | S58|2 UORIE|9S NP0 SjEWOTy (i3
@ 0 85 o @ 0O =
47 % 7§47 65
o & o & = 8 C T T T T Tel TTT T Tl T TTTTul T T T T Twl T [T T T Tel s papaEm 8
EEl Joy0an Buiybia M 15
T T T T Tel T T T T v T T T T el [T T T Te[T T T T Te] | 72 [L] %
C T T T T T Tl T T T T Tel T T T T Tel T T T Tof | va [L] wm
=2 an o [P I “ Al Al Tl - Tl Texfw] — Ta[xlu[(W[~ [a] [wa[x[a] [3[[H][x[7]we =aDEnBUE] IS AEILEA] =
=2 an oy z el — T T mal 3 - T [[[wl s [eAl [x [e[[na] | w[w0 Hoddns xeAly =
=2 an oy [I I — [(HA _[HAl — [x Al e[_ [[x[HA][_[H [®[HA] _ [H R 7Y P IR Uojiauny o0geo [
=2 an oy vz s ¢ — o A e e A A [[[[w | [H[x|w[we woddns -y seoepEy 0
oy an oy L[z s |0 B T N AN T I A A A 2 A e A A I8 % I B A VoldIEd U SJeiEp| seoepEy) 62
2 an oy 3 I P I B I T A S A I I A G A A I3 I I O 0 %0 I A A A A0 O I e A poddns-Ss| ssaspiep| o
oy an oy [I A I — [S I A I A T N 0 I O 7 I A G A 0 I 0 R e S R = =200 SMje] Oy el sevepEp) i
oy an oy [I I B T N A S I A A A A A 3 I T i e e 0 I 0 e I 0 A Q0N RoSOUA 0) saEpEp| sedepEp| a
=2 an oy 2 I P — Al W HAl T e[[hl (W[[H[[H[_ [wl®[H]| (W] _ [w|[x[a][|w|w #halAIBAD AiERA AEISI] LELER] T
ERIE oy z e |is ~ e Al - T TR el e e ®[H] — [w] [H|® s @[|[H[x|w[w AMAMIRAD AL AES|g epdE(] 4
=2 an oy [I P — A W] (W] Talx[A] [H[[[%[H] [H[® [[®[H] [H][x [1] [H[x|w][w MANIRAD HpERN AEISI] (| =
R I EN N ETN [I P I B T A 9 A A I I I A I 3 I O Y 0 00 A P A I I O I T = AEdEId AepdE(| 4
er an oy o v |ele — A e w - Tl e [l [alxle [[a{®[H] [x [[H[x[71]w0 =AeploY 0 PUREIVEH| uopesiesay| 6L
e an oy [I P — A e - Tl A=~ [[a{ =Wl [[H{® [] x [[| H [x| 1[0 [Adesiouop e spedoped puwey| uogesessy 2l
R I EN N ETN [I P I N T T O A I I 3 AT I A 2 N e Y A A I Al R P I SJBUEAPEOLRE SINGLEEI it
ER I ENENER [I P B e T T 2 T A I I A A I 3 0 O Y 0 80 I o A A I O I T S8AUEYD Jo syledioled Aon| Uogsaiesay ak
ER I ENENER [I P B T T 5 T A I3 T 2 T O Y A P30 A 0 O I O AULUE(de) Mmolry| Uogeaissay st
ER I ENENER [I P B T S A N A A I3 T 2 T O Y A P30 T 0 O e I O UojieniEsad LoDy rh
ER I ENENER [I P B I T S0 A N T A I I I3 T I 2 T O Y A P90 T 0 O I P Uojienesad peudnba | uopesesey S
ERIED oy L e |6 |¢ A (HAl (W~ [alxmal e[~ [x[HAl [H[[[HA[[[@[_ [Ha[x|H w0 spBuodde 10 uops0zeq| SpeuEddy [
R I EN N ETN 2 I P I B T T O IS I3 T T 2 Y N o N i 720 O I 0 T UojiEyoU e Luodety | Speueddy (i}
ER I ENENER [I P B T A 0 T I I I3 T A 2 I O Y A P2 0 I I 8 SpISUIDATE JWBiina 2AsEy| &
ERIED oy [I P — A [w W A3 [e[®[W[% [1] [H[®[H] x [1] [H[x]7] w0 |sweuquodde o uopsayipop Enusp]
R I EN N ETN [I P I B T N 9 A A A= I A7 A 3 7 O Y T 80 A o A A I O I uspddde BURUELD [sisuoddy| z
ER I ENENER [I P B T N 2 T A I I3 N A A I 3 I O O 0 00 A P A A I O I T SBUIL UDIENIE J0 UoRUEq| sisuoddy) a
ER I ENENER [I P I B T A 5 T A I I A A I 3 I A A 0 80 A P A A I O T saul padiajaid 0 uoyUyeq| Speweddy s
[ob| = [5b] = L2k e [ww | o | A | =3 poda| G| 50d| 0Us| bad | 4@ |podda| Bsu|sod|2ua| Bai| e |poida| Gsu| sod| aus| bei| = |posda| Bsw| sod| aus| Ped| 4e |posdo|peu|sod|ous|bea| ua | e [ana SORSEIEIED Veha1 g AR £ asa cpaRiol €
212|2|2|2|8| «|olole|ele ¢
g Z|2|2|2| 5|5 |2(E(E(5/5| 5|5 (e|el5|5z 2lzl2|212]=lzlz]zl2]z
iopas oG L L L 22|212(21212|2|212(212|2(|2(2|2|2|2 2 |E|53|5(8(8|&(|8(a(8|8]8
T T e gelsle|slE|EIE|IEIE(E
m|m|m W[
z (zlz|lzlz|lz|2 |2lzlz|lz|z|l2 (2222|222 (22222222222 -
g 2|3 /5(8/5/2|3|18/5|123/8|5 |5 |8/8|5/8|8 |8(|2|5(3|5(5 (5 5(8(5(8
32 32|lzz2(2(2|2|2|2|2|2|2|2|z|2|2|2|2|3 |2|2|2|z|2[z2[2|2[3[z(3
P 0 A 1 A < O 0 A - A - A - A - S
i AW X¥ [AV 7] Lv [5W[d% | D% | dv | O¥ | N [y | 19 | Mv | (v | Iv |He |97 4 | 3v [aw|ow|ev|ve|z | A | X (M|A [N |L| S |8 |B[d|o[N|W [T/ H|[r|I|H[D 4 El a > v
[« b |
“V-ow- GE f%s EES=07 |- 0- || [| =2 [B [« woe [& W12 13 ¥ = [@ B o lg@a Y swe/AaO
HES e MOPUFR ST sioel ewiDd wesul wel AP @ [

1939 1¥38-35INd- 1 ¥38-351nd X

72 K. Schmid and M. Schank

An important aspect in real-world scoping projects is the need to deal with a large
amount of information, thus a support tool needs to be able to simplify the data
handling. In particular, in the case of PuLSE-Eco a large number of characteristics
needs to be handled for industrial-size systems. The tool supports this with functions
that allow to cluster the characteristics hierarchically into groups and to collapse these
groups again into single higher level characteristics, if required. With this feature a
better overview of the product line characteristics can be gained. How values for
individual characteristics are combined into values for complete groups can be
explicitly defined on a case by case basis.

The tool allows to work with several scopes simultaneously. The semantics of these
scopes are not predefined. One possible usages is: different scopes for: performing
domain analysis, inclusion in the product line architecture, and implementation of
reusable assets. Another one: scopes for upper- and lower-bounds for inclusion in the
reuse infrastructure.

Another important feature is the ability to generate reports, which can be used as a
basis for external review. Providing this feature was particularly simplified by the
choice of Excel/VBA as implementation platform as this allows to export the report
information directly into Word, where it can be either directly printed or used as a
basis for further work.

4 Using PuLSE-BEAT

While in the preceding sections, we discussed the main features of the tool, in this
section we briefly illustrate how the various features synergetically work together to
smoothly support derivation of the scope.

The first step is to gather the information about the relevant characteristics and
products as described in Section 2. Besides the short description shown in Figure 2,
also long descriptions can be entered. They are added as comments to the cells (thus
they appear when moving the mouse-pointer over the cell) and can be also shown in
reports. Descriptions can be attached to both characteristics and products.
Additionally, characteristics can be later on reordered to arrive at a logical ordering
and grouping.

In the example given in Figure 2 a hypothetical product line of time planning
software is shown. This product line example is based on the hypothesis of a client-
server system (only the clients are part of the product line). The client software should
run homogeneously on different platforms (plain PC, as Web-application, on Windows
CE systems, etc.). The different platforms impose some restrictions such that the
relevant features will vary from product to product. The characteristics that were
identified were grouped into categories: core time-planning, facility reservation,
display, and interfaces.

At this point the report-feature of the tool can be used. It generates automatically a
report of the information captured in the tool so far. The reports generated in this way
are a preferred basis for reviews by the stakeholders. This type of reviews are iterated
until the product and characteristic lists are sufficiently stable.

A Decision Support Tool for Scoping Product Lines 73

The next step is to elicit the business goals and to derive from them benefit and
characterization functions. As described in Section 2, the approach used to perform
this derivation is based on the GQM-approach. The specific approach is described in
more detail in [5]. Per goal, which is relevant to the scope selection, one derivation is
created and captured in a derivation table (cf. Figure 3). The table captures the goal
that triggered the derivation, the type of the goal (goal type), i.e., whether the goal
relates to the selection of charactistics for the scope or to the selection of products as
part of the product line. Further, the questions are captured that are used to refine the
goal. Finally, the benefit functions are captured that are used to operationalize the goal.
The characterization functions describe the atomic parts of the benefit functions (cf.
Section 2). Additionally, auxiliary functions are used to simplify the description of a
benefit function. The derivation is supported by the tool by capturing the relevant
information and thus documenting the process and by managing interrelations with
other work-products (e.g., by adding columns to the product map that are needed to
gather values for the characterization functions).

As stated before, the evaluation approach supported by PuLSE-BEAT can also be
used to analyze whether specific products are truely adequate as part of the product
line. During capturing the evaluation criteria this is described by identifying the goal
“product-based”.

In filling out the derivation table, the support for handling of interrelations among
the various work-products provided by the tool is the most visible: when adding the
benefit, auxiliary, or characterization functions, the user is diverted directly to the
appropriate work sheet, where he can fully describe these functions, if they have not
yet been defined. When the user is finished with this task, these functions are
appropriately entered in the product map. If, for example, a characterization function is
defined (and it is not defined as relating only to the characteristic in general), then for
each product a column is added for holding the values for this function.

Figure 3 shows the derivation table for determining the impact on effort of making a
certain characteristic reusable. In the example, one benefit function (ES) is used, which
in turn uses two characterization functions (eff, req). The characterization function eff
captures the effort needed for creating a single characteristic in the context of a specific

E File Edt Yiew Insert Format Tools Data Window Help ;Iilll‘
Datei + Fragen = Mutzenfunktionen - Hifsfunktionen ~ Charakkerisierungsfunktionen = Sonstiges « |
Fa | =
A B cJ 3
Goal Minimize the effort needed for developing time planning systems fror the point of view of
1 developrnent manager at Makrosoft
2 |Goal Type charakteristikbasiert
3 |Questions How is effart defined (effort in person months for analysis, design, coding and testing)
Which impacting factors on effart are known? (Effort for implermentation of charakteristik in
4 different products; presence of a characteristic in the different products)
5 |Benefit functions ES
B |Auxiliary functions
7 _|Characterization functions eff
8 req
] -
144 [» [p1]{ Ableitungstabelle (6) 7 Ableitungstabelle (53 { Ableitungstabelle (4) 4/ Ableitungstabelle (3) 4 Ableliungstabele () 3 Ablei [4] E v |

Ready [[[[[e e

Figure 3. Screenshot of a Derivation Table

74 K. Schmid and M. Schank

product. req describes whether a certain characteristic is required for a specific
product.

After the product map has been set up like this, the tool can be handed over to the
stakeholders to insert the needed data. As they only need to manipulate the external
view of the product map, it is possible to hide all other worksheets, so as to prevent
accidental manipulation of the data entered so far. At this stage the tool is particularly
useful, as it empowers the people to do work off-line (if the meaning of the
characterization functions is well understood). The tool ensures that entered values are
in the required range and based on the entered data a proposed scope can be
automatically computed. This allows the users to easily assess the ramifications of
adding or removing specific features to/from products.

After the values have been provided by the stakeholders, all data has been gathered.
Now, scoping of the characteristics that should go into product line development can
be performed automatically by the tool based on the functions that have been provided.
Similarly, an evaluation of the product portfolio can now be performed automatically if
appropriate product-based evaluation functions have been defined. Figure 2 shows a
product map where scoping has been performed both with respect to the characteristics
as well as with respect to the products. Those characteristics that are greyed in Figure 2
are recommended for inclusion in the scope (the darker, the stronger is the
recommendation). All products, except the right-most one are in the highest level of
adequacy for the product line, only the last one is in the second-highest level, which is
an indicator that the inclusion of this product in the product line should be
reconsidered.

5 Conclusions

In this paper, we described a tool called PULSE-BEAT, which was designed to support
the PuLSE-Eco scoping approach [2]. In particular, we discussed the main
requirements that are posed by the scoping task for a support tool and described how
PuLSE-BEAT meets each of them. In addition, we described how the individual
features synergetically work together by giving an example of the tools usage.

To our knowledge, this is the first scoping support tool that has been described in
literature. We regard as key advantages of our tool its ability to capture the complete
information on a scoping effort and to maintain complete traceability among the
individual information items. Further, it provides automatic support for performing the
scoping decision, thus it also enables the analysis of what-if scenarios in a
straightforward manner.

While we believe, that there is still some room for improvement of the tool, we
think that at this point all core requirements are addressed. Thus, we plan to use it from
now on in our industrial scoping projects.

At this point enhancements to the tool concentrate mainly on improving the
usability (ease-of-use, robustness, and speed) of the tool, as the current version covers
completely the PULSE-Eco method, as it was described in [2]. In this context, we see

A Decision Support Tool for Scoping Product Lines 75

only room for minor functional extensions, e.g., extending the expressiveness of
auxiliary functions.

However, as we do currently work strongly on enhancing and extending the method
itself in the context of industrial cooperations, we expect to co-evolve the tool in
accordance with future enhancements of the PuLSE-Eco method.

Bibliography

1. L. Brownsword and P. Clements. A Case Study in Successful Product Line
Development. Carnegie Mellon Software Engineering Institute, CMU/SEI-96-TR-
016, 1996

2. J.-M. DeBaud and K. Schmid. A systematic approach to derive the scope of
software product lines. In Proceedings of the 21st International Conference on
Software Engineering, 1999.

3. L. Briand, C. Differding, and D. Rombach. Practical guidelines for measurement-
based process improvement. Software Process Improvement and Practice Journal,
2(3), 1997.

4. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-
M. DeBaud. PulSE: A methodology to develop software product lines. In
Symposium on Software Reusability ’99 (SSR’99), May 1999.

5. K. Schmid. An Economic Perspective on Product Line Software Development.
First Workshop on Economics-Driven Software Engineering Research, Los
Angeles, May, 1999.

6. L. Cohen. Quality Function Deployment. Addison Wesley, 1995.

7. Department of Defense — Software Reuse Initiative, Version 3.1. Domain
Scoping Framework, Volume 2: Technical Description, 1995.

8. D. Robertson and K. Ulrich. Planning for product platforms. Sloan Management
Review, 39(4):19-31, 1998.

9. Software Productivity Consortium Services Corporation, Technical Report SPC-
92019-CMC. Reuse-Driven Software Processes Guidebook, Version 02.00.03,
November 1993.

10. Software Technology for Adaptable, Reliable Systems (STARS), Technical Report
STARS-VC-A025/001/00. Organization Domain Modeling (ODM) Guidebook,
Version 2.0, June 1996.

11. J. Withey. Investment analysis of software assets for product lines. Technical
report CMU/SEI-96-TR-010, Software Engineering Institute, Carnegie Mellon
University, 1996.

Domain Potential Analysis:
Calling the Attention on Business Issues

of Product-Lines™

Sergio Bandinelli and Goiuri Sagardui Mendieta

European Software Institute
Parque Tecnolégico 204, Zamudio, Bizkaia, E-48170, Spain
Sergio.Bandinelli@esi.es Goiuria.Sagarduy@esi.es

Motivation

Product-lines represent a natural step in the evolution of software development into an
industrial practice. A product-line approach intrinsically leads to systematic reuse and
reuse is supposed to have a positive impact in business terms: saving development
and maintenance costs, time to market reduction, quality improvement, more
predictable project execution, etc.

In an industrial context, the decision of adopting a product-line approach must take
into account a wide range of factors. Technology is, of course, one of these factors,
but it is not necessarily the most important one and, for sure, it is not the “driving
factor”. The drivers for introducing a product-line approach are generally related to
the general company strategy, taking into account market considerations. The
product-line technology should be evaluated and used in this business context.

However, this previous analysis is not always performed and there is a tendency to
jump directly into the technical implementation of a product-line: architecture,
components, middleware technology etc. It is first necessary to reason with discipline
on what domain (or sub-domain) is the most appropriate one and on whether the
selected domain has the potential to justify the effort.

Not all domains are equally appropriate to be approached as a product line. A
successful adoption of product-line approach requires some conditions such as
potential demand for similar products, in-house knowledge and experience, existing
regulations and standards, etc. A domain potential analysis evaluates the degree to
which these conditions exist to serve as a reference for:

e Defining a product-line adoption strategy, and setting realistic goals for it.

e Deciding on the most appropriate domains or sub-domains for a product-line
approach.

e Reaching consensus on a shared vision for the domain.

e Evaluating progress in product-line adoption.

Some models are available in the literature to perform this kind of analysis. Most
of them are economic models and base the analysis on economic figures (cost vs.

“ ThissworksisspartiallysfundedsbysthesEuropean Commission under ESPRIT project P28651
PRAISE.

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 76-81, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Domain Potential Analysis 77

savings) to determine the benefits at different levels of reuse granularity: single
component, project or whole domain. Other models include some analysis of the level
of preparation of the organisation. (See [Lim 98] and [Poulin 97] for a survey of all
these models).

The domain potential analysis presented here takes these models as a basis for the
analysis of reuse benefits and combines this with a risk analysis. The two combined
dimensions, benefits and risks, give an overall picture of the potential of a domain.
The combined picture provides a clear indication on whether it is convenient to
approach a domain as a product-line in absolute terms and by comparing different
domains. In addition, the analysis may be adapted to be used with the available data in
the organisation.

A Simple Analysis of the Product-Line Potential in a Domain

The product-line potential in a domain provides an indication of the opportunities that
derive form adopting a product-line approach to develop applications in a domain and
the ability of the organisation to exploit these opportunities to obtain benefits from
them.
The concept of domain that we use is a very broad one. It includes
e the technical description of the domain in terms of the existing and potential
applications that share some common features (technology, functionality, etc.),
e the market of the domain (customers, competitors, regulations, etc.)
e the organisational structures that participate in the business.
When identifying a domain all these elements must be taken into account, since all
of them take part in the analysis.
The potential analysis is similar to taking an investment decision. This is why both
benefits and risks must be taken into account:
1. The benefits are the ones that the organisation expects from the product-line
approach.
2. The risks are the ones associated with the introduction of product-line practices in
the organisation.
The combined analysis benefits vs. risk gives the complete picture to take an
investment decision.

Analysing the Benefits

The right context to analyse the benefits is the set of declared goals of the
organisation to embark in a product-line. Depending on these goals, the organisation
can give more or less weight to one potential benefit over the others.

The list of these benefits can be very long, including the following ones:

Higher productivity

Higher quality

Higher Reliability

Faster time to market

78 S. Bandinelli and G. Sagardui Mendieta

BETTER bid estimation

Better life-cycle estimates

More on-time delivery

Cost improvements and savings

Improved maintenance

This long list can be generally shortened to the classical better, faster, cheaper:

Quality improvement

¢ Time to market reduction

e Cost reduction
Ultimately, all the benefits should (in the short or in the long term) result in

economical benefits for the organisation. Some of the benefits, such as reduction of
costs, can be directly translated into economic results. Other benefits, such as quality
improvement and time to market reduction, have an indirect impact on economic
results. As a simplification we consider that quality improvement and reduced time to
market have an impact as a reduction of maintenance costs and as an increment on the
number of requests that may be satisfied in the same period (more production capacity
translated into more units sold).

With these hypothesis, there are three main elements that take part in an economic
benefits analysis:

o INVESTMENTS (I): resulting from activities to establish and developing the
product-line infrastructure;

e EXPENSES (E): resulting from the activities for maintaining the product-line
infrastructure during its life;

e SAVINGS (S): savings achieved as a result of the development of applications using
the domain assets, comparing the cost to develop with reuse against the cost to
develop without reuse.

The depth of the analysis in terms of investments, expenses and savings can vary
according to the data available in the organisation. In general, the process model can
guide in a breakdown of the activities so that the effort associated with each of then
can be evaluated separately and then aggregated.

The economical analysis may be as simple as considering Rol (Return on
Investment) in terms of savings against investments and expenses or may also involve
additional analysis regarding when investments and expenses are done and when
savings are obtained. In this way, we calculate time sensitive indicators such as the
NPV (Net Present Value) or (PI) Profitability index.

Analysing the Risks

The objective of the risk analysis is to understand and quantify the major sources of

risk when introducing product-line practices in a domain. The analysis is supported by

a risk model. This model identifies a set of risk attributes organised into four risk

factors (see Figure 1):

e ORGANISATION, with attention to the adequacy of the organisational structures to
adopt reuse

o PERSONNEL;with-attentionstostaff-experience and preparation

Domain Potential Analysis 79

e PROCESS, looking at the presence of supporting processes for reuse
e PRODUCTS, looking at the existence of beneficial reuse characteristics in domain

products
Domain
| | | |
Organisation Persann el Processes Products Factaors
Att1 Att2 Att1 Att2 Att1 Att2 Att1 Att2 Attributes

Fig. 1. Structure of the Risk Analysis Model

The risk analysis is performed by rating each of the risk attributes and by giving an
impact weight for each attribute [Boehm 89]. The model provides a set of guidelines
to consistently interpret each of the attributes. The results from the risk analysis are a
risk profile and an aggregated risk level that represents the overall risk for the domain.

Tying It All Together

The potential analysis is completed with the determination of the organisation’s

attitude toward risk. This is determined through a questionnaire in which the

respondent must choose between a set of possibilities regarding investments in a

given situation. Three main attitudes are identified [Pike 96]:

e Risk Taker: This kind of organisations gives preference to obtaining more benefits
at the expense of taking much higher risks.

e Risk indifferent: A risk indifferent organisation is ready to take some more risk
only if there is a proportional increase in the benefits that may be obtained.

e Risk averse: For a risk adverse organisation, the main objective is to reduce risks.
The organisation does not look for increments in benefits if this implies taking
more risk. A positive result is adequate.

Most organisations fall in the risk adverse category.

The benefits analysis, the risk analysis and the attitude towards risk are combined
in a single graph that summarises the situation for one or more domains. The graph
looks like the one depicted in Figure 2, in which the x-axis represents the risk level
and the y-axis represents the economic return.

The risk attitude is represented by a line that divides the area into two parts. The
part above the line represents the area for which the organisation considers that the
domain potential is sufficiently high for an investment on a product-line approach.
Under that line, the risk is considered to be too high for the expected benefits and
therefore the domain should be rejected as a candidate for product-line investment.

80 S. Bandinelli and G. Sagardui Mendieta

Retum vs. Risk
P00
. "
80 / Risk attitude
Domains c /
2«
© °
N /
L [le——
9
0
[o/3 0% 2% 306 A% 5% &% 7% 80% 0% W%
Risklevel
Fig. 2. Return vs. risks
Conclusion

The paper describes a simple, concise and effective way of determining the potential
of a domain for introducing a product-line approach. The main contribution of this
analysis model is that it summarises much information in one single picture:

1. Support for an investment decision based on benefits vs risk dimensions.

2. Comparative analysis of several candidate domains and sub-domains to help the
organisation to concentrate the initial efforts in those domains with a higher
potential (i.e., achieve more benefits with less risks).

3. Indication in absolute terms of the convenience to invest in a domain taking into
account the organisation’s attitude toward risk.

The analysis has been successfully applied in several European organisations,
including small and big software development teams from diverse domains, including
utilities, banking, control systems, etc.

The analysis is usually performed in a one-day workshop meeting involving
participation of representatives from all the departments involved in the domain. It is
specifically important to involve not only the software development department, but
also systems and marketing/sales departments to bring a customer perspective to the
analysis.

These workshop-type meetings have demonstrated to be extremely effective to
achieve consensus across the different departments of stakeholders of a domain in a
given organisation. When consensus is not reached, the differences among the
participants are also recorded and shown in the graph. Actually the area associated
with the domain is a representation of these differences and provides an indication of
the uncertainty.of the information.collected.

Domain Potential Analysis 81

The domain potential analysis is presented as a tool to facilitate the inclusion of a
business perspective in setting a product-line strategy. It has been conceived with the
idea of being simple enough to be usable, without requiring much effort or data that is
not available in the organisations and, at the same time, complete enough to ensure a
disciplined and repeatable analysis.

References

[Boehm 89]
[Brealey 91]
[CSE 93]

[Favaro 98]

[Kirkwood 97]

[Lim 98]
[ODM 96]

[Pike 96]
[Poulin 97]

[Withey 96]

Barry W. Boehm, Software Risk Management, IEEE Computer
Society Press Press, 1989.

Richard A. Brealey, Stewart C. Meyers, Principles of Corporate
Finance, McGraw-Hill, 4" edition, 1991.

Centre for Software Engineering, Risk management for software
development projects, 1993.

Favaro J., Value-based Reuse Investment, Tutorial of the 2"
European Reuse Workshop, European Software Institute,
Madrid, 1998.

Craig W. Kirkwood, Notes on attitude toward risk taking and the
exponential utility function , January 1997.

Wayne C. Lim, Managing Software Reuse, Prentice Hall, 1998.
Lockheed Martin Tactical Defense Systems, Organization
Domain Modeling (ODM), Guidebook version 2.0, 1996.
Richard Pike and Bill Neale, Corporate Finance and investment,
Prentice Hall, 1996.

Jeffrey S. Poulin, Measuring Software Reuse, Addison Wesley
Longman, Inc., 1997.

Withey J., Investment Analysis of Software Assets for Product
Lines, Technical Report CMU/SEI-TR-010, Software
Engineering Institute, Pittsburgh, PA, 1996.

ol Ll Zyl_i}sl

Dependency Navigation in Product Lines Using XML:

Douglas Stuart, Wonhee Sull?, and T. W. Cook

Microelectronics and Computer Technology Corporation (MCC)
3500 W. Balcones Center Dr.
Austin TX 78759, U.S.A.
{stuart, sull, tw}@mcc.com

Abstract. MCC’s Software and Systems Engineering Productivity (SSEP)
Project brings together emerging software engineering technology in
architecture definition, analysis and generation, product family engineering, and
rationale capture to enable organizations to achieve unprecedented levels of
productivity and reuse. One of the central requirements for architecture-based
product line development is the capability to efficiently and effectively navigate
between related artifacts. This involves navigation both between product line
artifacts and application artifacts, and between artifacts associated with suc-
cessive development phases at each level. This navigation supports automated
identification, selection and generation of artifacts, as well as manual
development activities. This paper describes the Architecture Description
Language (ADL) and toolset used by the SSEP project, and its support for
linking and navigation in a product line development environment.

1. Introduction

MCC’s Software and Systems Engineering Productivity (SSEP) Project brings
together emerging software engineering technology in architecture definition, analysis
and generation, product family engineering, and rationale capture to enable
organizations to achieve unprecedented levels of productivity and reuse. An emphasis
of the SSEP project is the development of tools supporting product family oriented
development.

The current prototype toolset includes VisualADML, ScenarioManager, WinWin,
LinkManager, DependencyChecker, and ComposeTool. VisualADML is an editor for
product family architecture descriptions. ScenarioManager is a tool for capturing
scenarios for operational requirements. LinkManager provides for linking and
navigation between product family artifacts. DependencyChecker and ComposeTool
are used to create applications in the product family from the product family
architecture by first creating an application specific architecture and then building the
product from the architecture and an asset base of component implementations.

' All company, product, and service names mentioned are used for identification purposes only,
and may be registered trademarks, trademarks or service marks of their respective owners.

2 ThisyauthorsisinowsatsSKeTelecom;sKoreaszandymay be reached at sull @sktelecom.com. The
work described in this paper was performed while the author was at MCC.

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 82-93, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Dependency Navigation in Product Lines Using XML 83

One of the central requirements for architecture-based product line development is
the capability to efficiently and effectively navigate between related artifacts, in
particular between artifacts with semantic dependencies. This involves navigation
both between product line artifacts and application artifacts, and between artifacts
associated with successive development phases at each level. This navigation supports
automated identification, selection and generation of artifacts, as well as manual
development activities.

This paper describes the toolset used by the SSEP project and its associated
artifacts, in particular the Architecture Description Language (ADL), and its support
for linking and navigation in a product line development environment.

2. ADML

ADML, Architecture Description Markup Language, is an architecture description
language (ADL) [1] based on ACME [2] using XML [3], the Extensible Markup
Language, as a representation language. ACME and XML both have specific
advantages in the representation of software architectures for product families, in
addition to their other features. The use of ADML as an architecture representation
for the full life cycle of product family engineering capitalizes on these advantages.

The basic features of ADML are the basic features of ACME. The top level of an
ADML specification is a design. A design is made up of systems. Each system
represents an architecturally complete entity. A system is in turn made up of
components and connectors related via attachments. As architecturally complete
entities, systems can be used to represent applications within a product family, or
using representations, as refinements of other architectural elements. The
relationship between an architectural element and a system that refines it is specified
using a binding. The abstraction facility provided by representations and bindings
supports iterative refinement, implementation and design reuse, and the
externalization of implementation of architectural elements, all of which are important
to the successful application of product families.

Components represent the computational and data elements of an architecture.
Components have ports that define their architectural interface. Connectors represent
the interactions between components. Connectors have roles that define the
participants in the interaction represented by the connector. One of the hallmarks of
ADLs is that components and connectors are both treated as first class constructs.

The final aspect of ADML, and one particularly relevant to architectures for
product families, is that each element in an ADML specification may have one or
more properties associated with it. Properties are name-value pairs that have no
native ADML semantics. Properties provide the basic extensibility mechanism of
ADML. Although individual properties may have no ADML interpretation, ADML
extensions may provide such properties with semantic interpretations. For example,
the basic ADML interpretation of a property ("color", "red") of a component is just
that a property exists with name "color" and value "red". However, a visualization
tool could interpret the property and display the component in red. In fact, just such
an approach was used to build a visual editor for ADML.

84 D. Stuart, W. Sull, and T.W. Cook

2.1. Extensibility

In addition to other expected benefits of using XML as a representation language for
ADMLI4], such as access to COTS (Commercial-Off-The-Shelf) XML tools, there
are two features of XML that provide specific advantages for a product family
architectural representation. The first of these is extensibility, which is magnified by
the extensibility provided by ACME, the other foundation of ADML. As discussed
above, the property list mechanism, inherited by ADML from ACME, provides a
means for extending ADML semantically. The extension mechanisms of XML
provide a means for extending ADML syntactically.

An XML DTD (Document Type Definition) provides a means for defining XML
based languages. XML documents consist of elements, each of which may have
attributes (another property mechanism), sub-elements, and content. DTDs define an
XML based language as a context free grammar of attributed elements. DTDs
provide one means of extension. The ADML DTD may be modified to include
additional attributes and elements appropriate for a particular product family. For
example, performance attributes could be added to component and connector
elements in an ADML extension for a real-time product family. The DTD also
provides a mechanism for extracting multiple views from a single architectural
document. XML Architectures [5] provide a mechanism for projecting documents
consistent with one DTD onto another DTD. XML documents can also be checked for
conformance to DTDs, providing a way to enforce consistency in architectural
specifications.

2.2. Linking

A second feature of XML (and associated standards) that supports architectures for
product families is linking. The capability to define and navigate relationships among
artifacts is essential to effective development of products in product families. The
central notion in product family based development is that products in the family are
related and exploiting the relationships will lead to more effective development of
individual products. The types of relationships include refinement and
implementation relationships. Such relationships include those between the
requirements common to all members of the product family and the specific
requirements on an individual product within the family, and between components in
the product family architecture and their implementations in the product family reuse
repository.

XML, among other features, provides for links with multiple locators (targets) into
documents that may be represented external to the linked documents. These features
support the sophisticated linking strategies needed for product families. For example,
the links from a document in a legacy format may be stored external to that document
facilitating use of legacy tools in a product family environment. In addition, a single
link can be used to establish a relationship between a requirement and all of the
architectural elements implementing that requirement.

The linking facilities of XML in particular support the entire product family
lifecycle of both domain and application engineering. Links between product family
requirementspandyproductyfamilygarchitecture can be used to create an application
architecture from the application requirements. Links between the application

Dependency Navigation in Product Lines Using XML 85

architecture and the product family reuse repository can be used to automatically
generate an application within the product family.

ADML exploits the linking capabilities of XML, and the extensibility of both
XML and ACME, to provide a language for product family software architectures.
ADML can be extended for each product family to provide the needed
expressiveness. This may include extensions for particular architectural quality
attributes relevant to the product family, for requirements traceability, for
architectural design rationale, for architectural consistency, or for architectural
element implementations. The demonstration described in the next section gives
concrete examples of how ADML can be used to capture the architecture of a product
family and generate the architecture of individual products within the family.

Having an infrastructure that supports links, the next issue that needs to be
addressed by a product line development environment is the actual creation of links
by developers. Although automatic link creation is the ideal, current understanding
and tool support do not support it. For example, one approach to automatic link
creation would rely on proximity of access to create links. For example, if two
documents were simultaneously edited, then a link would be created between them.
Although such links could be useful, such links are likely to be redundant and
unhelpful, since human intervention is almost certain to be necessary to supply any
semantics to such a link.

Pending the development of more advanced techniques, most links will be created
manually by engineers, either domain engineers or application engineers. There are
two approaches to manual link creation. Either integrate link creation mechanisms
into each of the tools in the development environment, or provide a separate link
creation tool. The first approach has the advantages of not introducing a new tool, and
the potential for convenient or semi-automatic link creation. The second approach
requires the developer to use a separate tool, increasing the perceived effort to create
links, but such a tool is probably necessary in any event for maintenance and
navigation of links, and is required if the primary development tool can not be
extended to capture links. The second approach is followed in this investigation.

3. A Product Line Demonstration

A demonstration was performed to explore the utility of navigation approaches and
tools. The demonstration took the form of creating a product line using the prototype
SSEP Toolset. The toolset consists of a number of product line development tools that
create artifacts and links, and that manually and automatically navigate links. Two
applications were created within the product line. The tools were used to create a set
of product line requirements and application requirements for the two applications,
and an architecture for the product line. Links were also created between the product
line and application requirements, between the requirements and the architecture, and
between the architecture and a virtual asset base implementing the architectural
elements. Manual navigation was explored by moving between both levels of
requirements, and between requirements and architecture. Automatic navigation was
explored by automatically creating application architectures from the product line
architecture and an identified subset of requirements.

86 D. Stuart, W. Sull, and T.W. Cook

4. Linking in the SSEP Toolset

The introduction to this document described a number of potential applications for
navigation between product line artifacts. This section refines those notions in the
context of experiments carried out using elements of the prototype SSEP Toolset for
architecture based product line development. The current prototype SSEP Toolset
contains two tools that are used for requirements capture and domain modeling.
WinWin [6] is a requirements negotiation and rationale capture tool developed at
USC. The toolset also includes ScenarioManager, a tool for capturing scenarios in
SML (Scenario Markup Language).

The version of WinWin in the prototype toolset has been modified to export
RCML (Requirements Capture Markup Language), an XML based language for
WinWin based requirements. Although RCML includes the full complement of
WinWin artifact types, two artifact types are of special interest. Issues are used to
represent requirements. Options are used to represent the variability of the product
line [7] in a dimension represented by a requirement Option. Note that this usage
differs from the usage of the corresponding WinWin artifacts in the WinWin process
model.

The prototype SSEP Toolset also includes LinkManager, a tool for manually
creating and navigating links between XML documents, in particular those that
represent product line artifacts. The link manager maintains a list of product line
XML documents, and can be used to create multi-way directional links between
elements in any of the documents. The links are stored in an external link file so that
the set of product line links may be modified independent of the underlying XML
files. This is particularly important since WinWin can write but not read RCML.

In addition to creating links, LinkManager can also be used to navigate the created
links. This can be done either by selecting a link directly from the list of links in the
product line artifact base, or by selecting an element in any XML document in the
product line artifact base and using LinkManager to find the links to or from the
element, and then navigating the link. This basic functionality was sufficient to
perform experiments to determine the utility and practicality of the various modes of
navigation discussed in the introduction.

One type of navigation proposed is manual navigation between product line
requirements and application requirements. In the experiments performed, the product
line requirements were represented by an RCML document. The application
requirements were represented by SML documents for each application that identified
the particular choices within the product line variability. Links were created between
the product line variability alternatives, represented by Options in the product line
RCML document, and the corresponding Actions and Actors in an SML document
representing a particular application within the product line. Since both product line
and application requirements are captured in XML form, the links are also XML,
making possible the creation of multi-way links. For example, the same product line
requirement Option can be linked to several different application level SML Actions
and Actors that realize the option with a singular link. This facilitates maintaining
consistency since all of the application artifacts that are the realization of a single
product line requirement are identified in a single artifact.

Automatic navigation was explored by creating tools that would automatically
generate an application architecture from the product line architecture and a set of

Dependency Navigation in Product Lines Using XML 87

application requirements. This involved two tools. The ACS (Architecture
Components Selector) facility of LinkManager, when given a set of requirements
artifacts, would automatically generate a set of product line architecture components
by navigating the links between the application requirements (RCML Options) and
the product line architecture. The set of selected components serves as the basis for
the application architecture and is supplied to a second tool, DependencyChecker.

DependencyChecker uses the set of components supplied by ACS as a basis set for
an application architecture. The product line architecture includes dependencies
between components. If a component is present in an application architecture, any
component that it has a dependency to must also be included. In the architecture of
the experiment, such dependencies primarily reflected a delegation relationship.
DependencyChecker creates an application architecture by adding to the architecture
any components that components in the architecture depend on.

The success of LinkManager in providing manual link navigation and the ACS tool
and DependencyChecker in exploiting automatic link navigation validate the utility of
both types of navigation in product line development. Manual navigation was
effective in moving between product line and application requirements and allowed
both domain and application engineers access to the artifacts needed to perform
product line development. Further, the use of XML greatly facilitated both types of
navigation.

The experiments performed also highlighted several areas for both improvement
and further experiment. First, there were only two types of dependency used in this
experiment, the “requires” dependency between components in the product line
architecture, and an implementation/refinement dependency between product line and
application requirements. Further examination may yield other useful types or
subtypes of dependency. For example, all of the dependencies between product line
and application requirements in the experiment were AND implementation depen-
dencies. That is, a particular product line requirement is implemented by the
combination of all of the application requirements that it is linked to. It is easy to see
that OR implementation dependencies might also be useful. There may be other types
of dependencies that could be identified.

Another capability provided by the SSEP Toolset due to the use of XML is the
ability to have links to links. There are a number of ways such links could be used to
support product line development. One possible use is to have a single link
representing an application within the product line that is linked to all of the
individual product line requirements to application requirements links. Such a link-to-
links could be used to rapidly identify an application. Further applications of such
links could also arise.

5. Example

The following simple example illustrates the different types of links and approaches
to link navigation currently provided by the MCC toolset. The file extracts included in
this example are not the complete XML files generated by the toolset. The complete
files for this example are not included in the paper both in order to highlight salient
aspects.and. to conserve space.

88 D. Stuart, W. Sull, and T.W. Cook

Consider a hypothetical flatbed scanner software product line. Product line scoping
and domain analysis has determined that there are two relevant scenarios for using
flatbed scanners. They are used either to scan pages containing text that will be
extracted from the scanned image and saved in a text file using some standard text file
format, or to scan pages containing a photograph that will be saved in an image file
using some standard image file format. These two scenarios are captured using
ScenarioManager and saved in an SML file, an extract from which appears in Figure
1.

<ScenariosDocument >
<Agents>
<Agent name="image capturer" />
<Agent name="photo processor" />
<Agent name="text processor" />
<Actions>
<Action name="capture image"
<AgentRef href="# (image capturer)" />
<Action name="process text image"
<AgentRef href="# (text processor)" />
<Action name="save text file" >
<AgentRef href="# (text processor)" />
<Action name="process photographic image" >
<AgentRef href="# (photo processor)" />
<Action name="save photo file" >
<AgentRef href="# (photo processor)" />

<Scenarioss>
<Scenario name="text image">
<ActionRef href="# (capture image)" />
<ActionRef href="# (process text image)" />

<ActionRef href="# (save text file)" />
<Scenario name="photographic image">

<ActionRef href="# (capture image)" />

<ActionRef "# (process photographic image)" />

<ActionRef "# (save photo file)" />

Fig. 1. Scenario SML File

Examining the two scenarios, the domain engineer determines that the variability
in the product line resides in the type of page being scanned. The product line will
support either scanning photographs or scanning text. WinWin is used to capture this
product line variability in the RCML file in Figure 2 using the WinWin artifact types
agreement, issue, and option. Note that there are two products in the product line, one
represented by the agreement text scanner and the other by the agreement photo
scanner. The first selects the option fext image from the variability represented by the
issue image type, while the second selects the photo image option.

Dependency Navigation in Product Lines Using XML 89

<Project Name="scanner"s
<Users>
<ProjectUser Name="domain" />
<Artifactss>
<Issue identifier="domain-ISSU-1" name="image type">
<Agreement identifier="domain-AGRE-1"
name="text scanner" >
<ArtifactBody> Scanner that processes text pages
<Agreement identifier="domain-AGRE-2"
name="photo scanner" >
<ArtifactBody> Scanner that processes
photographic pages.
<Option identifier="domain-OPTN-1"
name="text image" >
<ArtifactBody>Captured image is a treated as text
<Option identifier="domain-OPTN-2"
name="photo image" >
<ArtifactBody> Captured image is a photograph

Fig. 2.WinWin RCML file

R text
processor
v
image file
g format
capturer
converter
V' N
R photo
processor

Fig. 3. Reference Architecture

90 D. Stuart, W. Sull, and T.W. Cook

With the domain model defined by the scenarios and planned variability, the
domain engineer now creates the product line reference architecture. In doing so, the
domain engineer identifies two elements of commonality within the product line. The
same image capture component can be used regardless of the type of image being
captured, and an existing file conversion component can be used to convert between
different standard text file formats and between different standard photographic file
formats. This leads to the reference architecture shown graphically in Figure 3 and as
an ADML file extract in Figure 4. The ADML file includes two Dependency
properties that indicate both image processing components require the file format
converter component.

<ADMLDesign>
<SystemDeclaration name="Scanner"s
<ComponentDeclaration name="image capturer"s>
<ComponentDeclaration name="text processor"s>
<SequenceDeclaration name="Dependency">
<LiteralDeclaration type="String"
value="file format converter" />
<ComponentDeclaration name="photo processor"s>
<SequenceDeclaration name="Dependency">
<LiteralDeclaration type="String"
value="file format converter" />
<ComponentDeclaration name="file format converter"s

Fig. 4. Reference architecture ADML file

As the activities described above are carried out using ScenarioManager, WinWin,
and VisualADML, the domain engineer will also be creating links between related
artifacts using LinkManager. An extract from the final link file is presented in Figure
5. Note that there are links between the RCML file agreements representing product
instances within the product line and the corresponding SML file scenarios. Also,
there are links between the agents that carry out the actions in the scenario and the
components in the product line architecture ADML file that implement them.

<LinkedDocumentss>
<Links name="default links" title="Links">
<Link name="text-os" direction="oneway">

<Locator
href="scanner RCML.xml#identifier (domain-OPTN-1)" />
<Locator href="Scenarios.sml# (text image)" />
</Link>
<Link name="photo-os" direction="oneway">
<Locator
href="scanner RCML.xml#identifier (domain-OPTN-2)" />
<Locator
href="Scenarios.sml# (photographic image)" />
</Link>

<Link name="capture-agentcomp" direction="oneway">
<Locator

Dependency Navigation in Product Lines Using XML

href="Scenarios.sml# (image capturer)" />

<Locator
href="scannerpla.adml#id(image capturer)" />
</Link>
<Link name="photo-agentcomp" direction="oneway">
<Locator
href="Scenarios.sml# (photo processor)" />
<Locator
href="scannerpla.adml#id (photo processor)" />
</Link>
<Link name="text-agentcomp" direction="oneway"s>>
<Locator

href="Scenarios.smlf#descendant (1,Agent,name, text
processor)" />

<Locator
href="scannerpla.adml#id(text processor)" />
</Link>
<Link name="text-agop" direction="oneway">
<Locator
href="scanner RCML.xml#identifier (domain-AGRE-1)" />
<Locator
href="scanner RCML.xml#identifier (domain-OPTN-1)" />>
</Link>
<Link name="photo-agop" direction="oneway">
<Locator
href="scanner RCML.xml#identifier (domain-AGRE-2)" />
<Locator
href="scanner RCML.xml#identifier (domain-OPTN-2)" />
</Link>
<Link name="sl-scag" direction="oneway">
<Locator
href="Scenarios.sml# (text image)" />
<Locator
href="Scenarios.sml# (image capturer)" />
<Locator
href="Scenarios.sml# (text processor)" />
</Link>
<Link name="s2-scag" direction="oneway">
<Locator
href="Scenarios.sml# (photographic image)" />
<Locator
href="Scenarios.sml# (image capturer)" />
<Locator
href="Scenarios.sml# (photo processor)" />
</Link>
</Links>

</LinkedDocuments>
ks file

91

92 D. Stuart, W. Sull, and T.W. Cook

When an application engineer creates an individual application within the product
line, LinkManager is used to navigate the links between artifacts created by the
domain engineer. As discussed above, this navigation can be either manual or
automated. As an example of manual navigation, the application engineer learning
about the nature of the variability in the product line can follow the link from the
RCML file text image option (domain-OPTN-1) to the corresponding text image
scenario in the SML file. As an example of automated navigation, to create the text
imaging application, the application engineer can select the text scanner agreement
element in the RCML file and invoke ACS. ACS will then automatically traverse the
links in the product line links file from the agreement to the corresponding scenario,
to the actions that make up the scenario and their corresponding agents in order to
identify the components required for the application instance. In this case, selecting
the image capturer and text processor components. DependencyChecker could then
be used to generate the complete instance architecture by adding the file format
converter due to the ADML file dependency of the fext processor component.

6. Architectural Analysis

An area for future study is the use of dependency information in the analysis of
product lines and applications within the product line. The promise for early analysis
provided by dependency navigation is evident in the DependencyChecker tool.
Although currently configured to generate consistent architectures, ones in which
each dependency is satisfied, it can also be used to determine if an architecture
supplied as input is complete with respect to its dependencies. A richer dependency
language would provide expanded scope for such analysis.

Likewise, navigation between product line and application requirements provides a
basis for automatic generation of test suites for applications within the product line.
The test artifacts associated with particular product line requirements can be identified
by navigating dependencies from the application requirements to the related product
line requirements to the appropriate test suites. The test suites thus constructed would
form a basis for testing the application. Note, too, that if test suites were associated
with domain model, product line architecture, or product line component
implementation artifacts, such test suites could also be identified by navigating the
appropriate dependencies. The automatic creation of a basis set of test suites would
help ensure adequate test coverage for applications within the product line. Note that
additional test suites corresponding to unique requirements of the application would
have to be separately created.

7. Conclusion

Navigation between the various artifacts that arise during architecture based product
line development is crucial to successful product line development. The goals of
product line development are achieved through planned reuse of product line artifacts
in multiple applications in the product line. Such strategic reuse depends on the
application engineer being able to develop the application within the context of the

Dependency Navigation in Product Lines Using XML 93

product line, requiring access to product line artifacts in context. Such in context
access can only be provided by links capturing the dependence relationships between
product line artifacts. This document has explored the utility of such artifacts, and
documented the viability of their use through an experiment. Although the
dependency based navigation between product line artifacts described here is
valuable, there are a number of potential extensions to the basic navigation
capabilities described here that are worthy of further investigation.

References

1 Neno Medvidovic and Richard N. Taylor. A framework for classifying and comparing
architecture description languages. In Proceedings of the Sixth European Software
Engineering Conference together with Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 60-76, Zurich, Switzerland, September 1997.

2 David Garlan, Robert Monroe, and David Wile. ACME: An architecture description
interchange language. In Proceedings of CASCON 97, November1997.

3 Lars Marius Garshol. Introduction to XML,
http://www.stud.ifi.uio.no/~larsga/download/xml/xml_eng.html, May 1998.

4 Steve Pruitt, Doug Stuart, Wonhee Sull, and T.W. Cook, The Merit of XML as an
Architecture Description Language Meta-Language, Position Paper for WICSA, San
Antonio, Feb. 1999.

5 Eliot Kimber. A tutorial introduction to sgml architectures. Technical report, ISOGEN
International Corp., 1997.

6 Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming June Lee. Software requirements
negotiation and renegotiation aids: A theory-w based spiral approach. In Proceedings of the
17th International Conference on Software Engineering (ICSE-17), Seattle, April 1995.

7 Wonhee Sull. Investigation on variability in product line engineering (In Preparation) 1999.

ol Lalu Zyl_ﬂbl

Summary of Product Family Concepts Session

Juha Kuusela' and Jan Bosch’

‘Nokia NRC
Itdmerenkatu 11-13
00180 Helsinki, Finland
*University of Karlskrona/Ronneby
S-372 25 Ronneby, Sweden
Juha.Kuusela@research.nokia.com, Jan.Bosch@ipd.hk-r.se

Introduction

The notion of software product families is still hard to control and manage. One can
identify a number of reasons for this. First, the different dimensions of variation
within a family result in, among others, overlapping feature interaction problems.
Second, the relationships between a product and the family is not always trivial.

The title suggests this session was concerned with the concepts that underlie
software product lines. Interestingly enough, the papers in the session actually did not
address this, but rather discussed a number of instances of or approaches to
representing software architecture concepts.

The questions that we asked were

How to control and manage different dimensions of variation within families?
What is the relationship between products and families?

How to design on a family level?

How to support instantiation of products, refinement of architectures and
traceability of requirements and their changes.

e How to define connectors, components, reference architectures?

These questions should be answered so that we can also see how different documents
developed during PL process should be structured and how each one of these artifacts
are linked to each other so that we can navigate from one to another. This session
emphasize was on practical solutions to these questions. Solutions that work even if
we do not have universal semantics integrating all models.

Papers

First paper in the session was Dependency Navigating in Product Lines Using XML
presented by Douglas Stuart. He explained that MCC’s SSEP project is focusing on
tools to support architecture based PL development. Their approach is based on
cleverly combining existing tools and their own development.

As an architecture representation they use ACME based ADL. The real clue behind
the tool set is architecture description markup language (ADML) based both on
ACME and XML. Use of XML brings COTS support for parsers, browsers, editors
and an ability to flexibly link structured documents (n-to-n, external).

First generation of this tool set is now complete and one case study has been
completed and support for dependency based navigation between product line
artifacts has proven valuable. The work continues to develop a new ADML editor,

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 94-95, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Summary of Product Family Concepts Session 95

Jini based implementation of Link Manager and further development of ADML
(AML, Analysis).

Second paper was Software Connectors and Refinement in Family Architectures
presented by Alexander Egyed. This paper emphasizes the role of generic software
connectors in supporting flexible product families. Role of these connectors is to
mediate interactions among components, to provide auxiliary mechanisms for
interaction, and to define dependencies and protocols.

Authors also claimed that the connectors are largely application domain
independent and that the types of connectors are far limited than the types of
components. Connectors could also isolate certain system properties like deployment
profile, concurrency, security and reliability. Question is industry willing to
standardize connectors was raised.

Bounded connectors can support analysis of family architecture even if
components are still ambiguous. Modeling variation in components can be done
through connectors. Paper also introduces family designs as a mechanism to avoid
problems of architecture refinement and bridging the gap between product
architecture and design.

This paper made strong conclusions like connectors are better in modeling
bounded ambiguity, connectors are more flexible (e.g. COTS), architectural modeling
requires consistent refinement and evolution, family designs can be used as
intermediate models.

The third presentation System family architectures: current challenges at Nokia
was given by Alessandro Maccari. He explained the complexity of feature variation in
mobile phones coming from network standards, handset categories, user interfaces,
operating systems and country-specific requirements.

Inn this situation it is not clear how to do requirements management and
engineering, how to structure software with variance and how to best model product
families. Epoc based smart phone family is the current challenge where application of
family architecturing techniques can provide real impact. These phone are highly
complex but the family includes only few products.

Discussion and Observation

The role of connectors was discussed. Their role as suggested by the second paper
was not really accepted. Participants pointed out that variation has to be modeled both
on connectors and components. Also the stability of connectors and components may
vary. Sometimes connectors are just the glue code needed to integrate existing
components.

Mainly discussion concentrate on the role and nature of features. What they are,
how they can be manipulated and what is the role of features in scoping and defining
a product line architecture.

The role of navigation aids in supporting traceability of requirements and impact
analysis of changes was also touched.

When the session ended we still had more questions than answers.

Software Connectors and Refinement in Family
Architectures

Alexander Egyed, Nikunj Mehta, and Nenad Medvidovic

Department of Computer Science

University of Southern California

Los Angeles, CA 90089-0781, USA
{aegyed, mehta, neno}@sunset.usc.edu

Abstract. Product families promote reuse of software artifacts such as
architectures, designs and implementations. Product family architectures are
difficult to create due to the need to support variations. Traditional approaches
emphasize the identification and description of generic components, which
makes it difficult to support variations among products. This paper presents an
approach to modeling family architectures using generic software connectors
that provide bounded ambiguity and support flexible product families. The
paper also proposes an approach for transforming a family architecture to a
product design through a four-way refinement and evolution process.

Introduction

Large, complex systems are often developed in the context of product families’ . This
enables developers to maximize reuse, accelerate the development process while
reducing costs, and deliver products that are generally more reliable. Reuse across
product families occurs in terms of architecture, design and implementation.
Architectural idioms identify the kinds of building blocks that may be used to
compose a system and specify the constraints on the way the composition is done. An
explicit focus on common architectural idioms has the potential to fundamentally
transform the nature of software development, as component integration replaces
implementation as the predominant development activity. The promise of software
architectures is that better software systems can be built in this manner more quickly
by modeling their important aspects throughout, and especially early in the
development. Coupling the benefits of product family-based and architecture-based
development has been recognized as an area with a great potential payoff, as
evidenced by a growing number of conferences, workshops, and symposia that focus
on this subject [2, 3, 4, 8, 12].

The existing body of research in the area of software architectures for product
families is characterized by two major foci:

LoInthisspaper;mwenusenthesfollowingsphrases interchangeably: families, application
families, product families, product lines, and domain-specific software.

K. van der Linden (Ed.): IW-SAPE-3, LNCS"1951, pp. 96-106, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Software Connectors and Refinement in Family Architectures 97

1. specification of generic, product family architectures (also referred to as reference
architectures) and their instantiation into application architectures (e.g., [11]); and

2. identification and integration of reusable components that comprise different
members of a product family (e.g., [5]).

In this paper, we focus on two additional issues that have not been addressed by

existing approaches and that are useful complements to those identified above:

1. the role of software connectors in specifying and ensuring the extra-functional
properties of both a product family and individual applications within the family;
and

2. refinement of an instantiated product architecture into a design and, eventually, an
implementation.

The role of connectors in software architectures is to isolate all communication,

coordination, and mediation [10]. Connectors do not generally provide domain-

specific functionality, but rather enable and streamline interactions among the
functional elements (components). Thus, our hypothesis is that certain varying
properties of applications within a family (e.g., deployment profile, concurrency,
interoperability platform, performance, reliability, security, etc.) can be isolated

within connectors. Also, certain types of connectors may occur regularly within a

family. Our on-going work on classifying software connectors will serve as a vehicle

for exploring these issues.

To enable the refinement of an architecture into its implementation, we leverage
our work on transforming architecture-level constructs (specified in an architecture
description language, or ADL [9]), into design-level constructs (specified in the
Unified Modeling Language, or UML [6]), and enabling the refinement of the
resulting high-level design in a property-preserving manner [1, 7]. We introduce the
notion of product family design, analogous at the design level to a product family
architecture. A product family design captures recurring design patterns across
components in a family. Another hypothesis is that both product family designs and
product architectures are needed to enable effective refinement.

The paper is organized as follows. Section 2 identifies the relationships between
products and families, and between architectures and designs. Section 3 outlines the
role of software connectors in family architectures. Instantiation of a product family
architecture and refinement of the resulting product architecture into its
implementation is discussed in more detail in Section 4. Section 5 presents an
example illustrating the approach. Conclusions and a discussion of open issues round
out the paper.

Relationship of Products and Families

Software architectures can be described using components, connectors and
configurations [9]. Components are units of data store or computation whereas,
connectors model the interactions among components. Architectural description
identifies the obligations and freedoms of a software system built to that architecture.
Obligations allow a high level analysis of system properties while the freedoms allow
developers to design and implement the system according to the characteristics and
constraints_of _an_underlying infrastructure. Since a product family consists of
products with commonalities and differences, it is useful to capture these aspects of

98 A. Egyed, N. Mehta, and N. Medvidovic

the individual products in family architecture. Moreover, use of the same architectural
elements to describe family architectures and individual product architectures aids in
keeping these artifacts consistent and simplifies understanding.

A family architecture provides generic information common to all the products of
the family. This common information may include features present in all systems or a
list of possible alternatives that products exhibit. It is easy to represent family
architectures in terms of the similarities alone. However, in order to support variations
in the individual products, a family architecture needs to describe the architectural
elements with a certain amount of ambiguity. The product architecture, on the other
hand, identifies specific architectural choices for a single product and thus can be
considered as an instantiation of the family architecture. The product architecture is
less ambiguous since all architectural elements are already chosen and specified for
the sake of completeness. Proceeding in another direction, the family architecture can
also be refined to create a set of more detailed family designs that can be used in
individual products to obtain the recurring functional and extra-functional properties.

) instantiation
Family Product
Architecture Architecture
refinement refinement

instantiation

Product
Design

Family
Design

Fig. 1. Design refinement and instantiation using product architecture and family design

Figure 1 depicts a high-level framework we propose for architectural modeling of
product families and their improved refinement and evolution. The white boxes and
arrows in the figure denote the traditional way of instantiating product architectures
from family architectures, followed by the refinement of product architectures into
their designs (and subsequent implementations). To complement this traditional
approach, we introduce the concept of family design. A family design contains
design-related information about a product family that the architecture did not (or
could not) specify. For instance, a family design could contain different design
interpretations of architectural elements (e.g., in the form of design patterns). Merging
the product architecture information with family design information can then lead to a
product design. Therefore, the product architecture defines at a high level what needs
to be designed and the family design provides information on how to design it. This
four-way relationship between architecture, design, family, and product implies that
there are at least two alternate but complementary paths of creating designs for the
products of a given family.

Software Connectors and Refinement in Family Architectures 99

Software Connectors in Family Architecture

Family architectures capture the essential properties and relations of the product
family. They describe structural and behavioral freedom and model the functional and
extra-functional aspects of a family. Behavioral freedom and functional aspects of the
product family are typically captured in components. Our approach also supports the
description and analysis of extra-functional properties, coupled with the identification
of the structural freedoms through the use of semantically rich connectors.

As discussed above, family architectures need to describe commonalities as well as
variations among family members. Commonalities can be captured through elements
that are mandatory to all products. The real difficulty lies in modeling variations that
have to be supported at the level of a product family. Various approaches have been
proposed to describe family architectures including the use of styles, parameters,
constraints and service provisioning. However, as discussed in [11], none of these
techniques alone adequately addresses the problem of supporting variations in the
product family. There is clearly a need for defining family architectures with a certain
degree of bounded ambiguity in order to support product variations.

Consider the case of a customer service product family that needs to support two
product domains, retail banking and telephony. These products require variations in
terms of the underlying information, as well as in the interaction of the architectural
components. The banking application requires online transactions, whereas the
telephony product requires a batch update. A useful family architecture would be able
to support the description of both kinds of products.

Software architecture captures the essential structural and behavioral information
in the form of components and connectors. Family architectures are useful because
they lead to better structured reuse and also because the bulk of the architectural
analysis can be performed at the level of an entire family. There is a tradeoff between
vagueness of description and the scope of applicability when it comes to specifying
the architecture in product families. At the level of a product family, components tend
to be vaguely described because family architectures need to support a variety of
product features. This vagueness about components reduces our ability to reason
about the family architecture. On the other hand, in the product architecture,
components are described more precisely [13]. This tradeoff gives rise to reduced
analyzability at the family architecture level and reduced flexibility of the concrete
products.

Current techniques for representing components in family architectures, however,
tend to be inflexible. Many reuse techniques depend on the availability of
interchangeable components that can lead to a component marketplace. However,
experience shows that such components can only be achieved through considerable
standardization efforts. Standardization tends to be a long process in which decisions
are often made at a corporate level rather than industry-wide level. Component
centered reuse therefore tends to take longer to adapt and is applicable only to niche
domains. On the other hand, the software industry has very quickly embraced
component integration frameworks such as DCE RPC [14], COM [15], CORBA[16]
and Enterprise Java Beans [17]. This indicates that the industry is more amenable to
accepting standards of integrating components than to standards of defining
components. We therefore focus our research on the role of software connectors in
family architectures.

100 A. Egyed, N. Mehta, and N. Medvidovic

Software connectors describe the interactions among architectural components and
support communication, coordination, conversion and facilitation needs of
components [18]. Connectors can be used to describe interactions among components
in family architectures. Furthermore, many extra functional properties of a system can
be attributed to semantically rich connector mechanisms such as events, distributors
and arbitrators. Since connectors can be applied across problem domains, they have a
high potential for reusability. Connectors also significantly affect global system
properties such as availability, throughput, security and scalability. Various
architectural-styles motivated by software connectors have been studied, e.g. pipe and
filter [19], real-time data feeds [20], event-driven architecture [21], message-based
style [22], middleware-induced styles [23], and push-based systems [11].
Architectural styles are an important mechanism for enabling reuse in family
architectures [11, 24], indicating that software connectors have a major role to play in
enabling architecture-based reuse.

Connectors provide bounded ambiguity that is necessary for supporting variations
in family architectures. In order to effectively exploit that ambiguity we have used a
taxonomy view of software connectors that describes the connector types, dimensions
and their possible values (see Figure 2 for an extract). The ambiguity is contained in
the various dimensions along which a connector can be characterized and the range of
values that a connector can assume for each dimension. Since there are a finite
number of values that can be assigned for each connector dimension, ambiguity
involved in defining connectors in an architecture is bounded. Family architectures
can be vague about the component interactions and as such can be described using
imprecise connectors, i.e. connectors that identify a range of values for connector
dimensions. Our taxonomy allows architects to choose the concrete connectors
necessary to support interaction among components and to provide the dimensions
along which each specific product can choose a different variation of interaction.
Many extra-functional properties can thus be evaluated based on connectors as their
dimensions of variation are known.

As a solution for the example problem introduced above, the customer service
product family architecture would describe the required component interactions in the
form of an event connector that allows variations along dimensions shown in Figure
2. It then becomes possible to describe both forms of required interactions - online
transactions and batch updates - based on the event dimensions of notification and
synchronicity. It is possible to describe the distribution profile of the interactions
using the distributor dimensions delivery and addressing.

We are currently developing an infrastructure for using and experimenting with
connectors for implicit invocation, real time communication and parallel execution.
This infrastructure builds upon our previous work with event connectors and adaptors
[22].

Four-Way Refinement and Evolution

Having discussed an approach to exploiting connectors in modeling family
architectures and instantiating them into product architectures, we now discuss how to
refine_the resulting product architectures into individual product designs. A product
architecture constitutes an effective milestone [25] for any project since it can be

Software Connectors and Refinement in Family Architectures 101

analyzed and simulated to ensure the presence (or absence) of properties of interest.
Nevertheless, it is still a difficult task to refine those architectural models into designs
and actual implementations.

Producers
Cardinality Observers
Event patterns
Best effort

B Exactly on
Delivery A s
At least once
- Outgoin
Priority Incc?ming
Synchronous
Synchronicity Asynchronous
Time out synchronous

Polled

Publish/subscribe
Central update

Queued dispatch

. Absolute
Causality Relative

Page faults
Hardware Interrupts
Traps

Event
Notification

Mode .
Signals
Software GUI input/output
Triggers
Structure based H'aetr archical
Naming X
Attribute based

Best effort
s) Exactly once
emantics At most once

Distributor Delivery At least once

i Unicast
Mechanism Multicast
Broadcast

Membership ;B\Sf‘r?gf d

Routing Static

Path Cached
Dynamic

Fig. 2. An excerpt from the connector taxonomy showing (from left to right) types, dimensions,
subdimensions, and values.

Refinement involves the creation of lower-level design models (and ultimately
source code) and their continuous validation to ensure consistency. Refinement is
difficult and it often has to be done manually. This, however, implies that defects may
be introduced while refining the product design from its architecture. Thus, we are
faced with a major problem: we create the family and product architectures with the
understanding that they describe certain desirable properties the end system should
exhibit; at the same time, if consistent refinement and evolution cannot be ensured,
then there is no guarantee that the final product will indeed exhibit those properties. In
other words, inconsistent refinement invalidates the purpose and utility of familiy and
the product architecture. Meaningful architectural modeling must therefore ensure
faithful refinement and evolution. This section will discuss an approach to improve
the integrity of product models through the automation of refinement.

ol Lalu Zyl_ﬂbl

102 A. Egyed, N. Mehta, and N. Medvidovic

Automation during Refinement

The traditional way of modeling family architectures involves instantiating a family
architecture into a product architecture, followed by refining that product architecture
into a product design (Figure 3a — white area). This process may seem simpler in
comparison to our proposed approach (Figure 3b — gray area) of using a family
design, mainly because our approach additionally requires (1) modeling of a family
design and (2) knowledge of how to relate it to the product architecture. However, we
believe that these two additional activities ultimately simplify the overall refinement
process. Using the traditional “family architecture to product architecture to product
design” approach requires an instantiation from family architecture to product
architecture and a refinement from the product architecture to a corresponding
product design. The instantiation is relatively easy to do compared to the refinement
activity, which is complicated by the lack of automation support. Even if the
refinement could be automated, we would still be faced with the possibility of
mismatch introduction at a later stage, e.g., when either the design or architecture is
altered and those modifications are not properly propagated throughout the family.

)) easy
Family Architecture :> Product Architecture

a) hard

Product Design

eas
Family Architecture |:y> Product Architecture

b) hard medium
easy
Family Design |:> Product Design
- — —
~v" "
done once done multiple times

Fig. 3. Two refinement approaches.

Using a family design requires one additional instantiation activity — from a family
design to a product design — which is again relatively straightforward. However, by
replacing some (hard) refinement activities with (easy) instantiation activities, we
achieve the added benefit of having to do less refinement, which, in turn, significantly
simplifies doing product designs. Furthermore, we get the benefits of design reuse
which complements architectural reuse (enabled through the use of family
architecture). On the downside, arriving at a family design is not trivial or easily
automated. The major advantage in using a family design is that we need to create it
only once for each product family. Thus, once the family design is in place, each
additional product can be architected and designed much more easily (because of
having simplified the refinement of product architectures). On the other hand, without
a family design we may avoid the hard initial task of creating and instantiating it, but
the task of refining product-architectureswould be harder. It is not difficult to see the

Software Connectors and Refinement in Family Architectures 103

return on investment of doing a one-time difficult task that simplifies a later repetitive
task as opposed to avoiding that hard initial task but complicating the repetitive one.
Therefore, family design allows us to shift parts of the hard repetitive tasks from
product architecture refinement to family architecture refinement.

An added benefit of standard family designs is that they can be used to realize
different species of the same connector type. For example, design patterns for central
dispatch, publish-subscribe and queued dispatch events can be described in the form
of family designs that realize the event connector, and are eventually instantiated in
the product designs, based on the specific mode of interaction required. Additional
design patterns can describe the other dimensions. This technique requires integration
of design patterns in the family design for specific values of the different connector
dimensions into a single software product design.

Continuing our previous example, the use of events in the customer support
product family architecture as the means of component interaction would leave a lot
of flexibility in the design of individual products; the family architecture can support
a large number of variations in each product. The product architecture can be used to
instantiate an event connector by selecting the dimensions of each connector instance
in the family architecture. This is an easy step, as it would involve looking up the
taxonomy of connectors and making choices for the dimensions of a connector.
Family designs can then provide standard refinements in the form of design patterns
of event-based interaction for different platforms and middleware environments.
Finally, the product design would select specific design patterns for the target
environment and desired product properties of the system.

Example: Going from Family Architecture to Product Design

Figure 4 depicts a simple example on how to use generic connectors and family
design concepts to generate a product design from a family architecture definition.
The figure depicts a simple accounting family architecture (upper left) that supports
access to accounting information via an event-based connector. This particular family
architecture allows two types of interfaces, one for ATM machines and one for
terminal consoles, but only one at a time. The family design (lower left) depicts
possible realizations of above architectural elements. Note that there are realizations
for both architectural components and connectors. Furthermore, we need to be able to
deal with incomplete family design specifications including missing links (e.g.,
missing glue code) and missing realizations for some architectural elements. For
instance, Flat File is a realization of Account; however, it does not work together with
any realization of Event Bus (publish-subscribe, control dispatch, or batch update).

In our example, we decided to instantiate a product architecture that consists of
Account, Event Bus, and Console Manager (upper right). Using this product
architecture as a reference and the family design as a resource database, we can now
design and build the product using a predefined set of realizations. For instance, we
could use the Console PC Mgr and combine it with either a Publish-Subscribe bus
and a Database, or a Batch-Update bus and a Flat File. When we specified the
product architecture, we also specified some attributes the architectural connectors
should demonstrate. For instance, we pre-selected the Event bus to be of the Batch
Update style. With this additional information, we can now automatically select a

104 A. Egyed, N. Mehta, and N. Medvidovic

possible product design from the family design that would be compatible with the
product architecture (lower right). The product architecture supplies information on
what to design, while the family design provides a details on how to design a product.

Product Architecture

Notification=Batch
Console

Manager
Account
WHAT —
selection
Console
PC Mgr

Product Design

Family Architecture

'

Account

Flat File

oW

instantiation

Contral
Dispatch

Fig. 4. Example of instantiation, refinement and traceability links

Conclusions

This paper identified and addressed two significant challenges in product family
development: modeling family architectures via generic connectors and supporting
automatic architectural refinement via family designs. Our approach involves the use
of a taxonomy of connectors to model the bounded ambiguity in family architectures.
We do not claim that connectors are more important than components for enabling
family architectural descriptions; however we have found that, in some respect,
connectors are significantly more flexible and reusable than components.

To enable automatic refinement and evolution, we introduced the concept of family
design. Family designs provide a set of realizations of architectural components and
connectors (e.g., in the form of design patterns). They simplify refinement by
providing an additional path from a family architecture to a product design. We
believe that combining a product architecture and a family design provides simplified
and more precise refinement.

To date we have developed a suite of tools that allows automated mapping between
architecture and design as well as their consistency checking. We have also studied
the role of complex connectors in simplifying component integration and generating
designs [1] and implementations [26]. The techniques used in this paper extend our
previous work in the area of product line architectures [24]. This work is still in
progress and it will evolve in several directions, including refining of our taxonomy
of connectors, providing automated support for creating family designs, and resolving
mismatches among architectural and design views at the level of a product family.

Software Connectors and Refinement in Family Architectures 105

Acknowledgements

This research is sponsored by the Defense Advanced Research Projects Agency, and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under
agreement numbers F30602-94-C-0195 and F30602-99-C-0174, as well as by the
Affiliates of the USC Center for Software Engineering. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency, Air Force Research Laboratory or the
U.S. Government.

The authors are thankful to Sandeep Phadke and Marija Raki¢ who provided useful
feedback while discussing the topics presented in this paper.

References

[1] M. Abi-Antoun and N. Medvidovic. Enabling the Refinement of a Software
Architecture into a Design. In Proceedings of The Second International
Conference on The Unified Modeling Language (UML’99), Fort Collins, CO,
October 1999.

[2] ARES. Proceedings of the International Workshop on Development and
Evolution of Software Architectures for Product Families, Las Navas del
Marqués, Avila, Spain, November 1996.
http://hpv17.infosys.tuwien.ac.at/Projects/ ARES/public/ AWS/

[3] ARES II. F. van der Linden, editor. Proceedings of the Second International
Workshop on Development and Evolution of Software Architectures for Product
Families, Las Palmas de Gran Canaria, Spain, February 1998.

[4] ARES III. The Third International Workshop on Development and Evolution of
Software Architectures for Product Families, Las Palmas de Gran Canaria, Spain,
February 2000.

[5] Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE Avionics
Reference Architecture. In Proceedings of AIAA Computing in Aerospace 10,
San Antonio, 1995.

[6] Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

[7] A. Egyed and N. Medvidovic. A Formal Approach to Heterogeneous Software
Modeling. Alexander Egyed and Nenad Medvidovic, to appear in Proceedings of
Foundational Aspects of Software Engineering, Berlin, Germany, 2000.

[8] R. Hayes-Roth and W. Tracz. DSSA Tool Requirements for Key Process
Functions. ADAGE Technical Report, ADAGE-IBM-93-13B, October 1994.

[9] N. Medvidovic and R.N. Taylor. A Classification and Comparison Framework
for Software Architecture Description Languages. Accepted for publication in
IEEE Transactions on Software Engineering, 2000. (To appear)

106 A.Egyed, N. Mehta, and N. Medvidovic

[10]1D. E. Perry. Software Architecture and its Relevance to Software Engineering,
Invited Talk. Second International Conference on Coordination Models and
Languages (COORD 97), Berlin, Germany, September 1997.

[11]D. E. Perry. Generic Descriptions for Product Line Architectures. In Proceedings
of the Second International Workshop on Development and Evolution of
Software Architectures for Product Families (ARES II), Las Palmas de Gran
Canaria, Spain, February 1998.

[12] The First Software Product Line Conference, August 28-31, 2000, Denver,
Colorado, USA. http://www.sei.cmu.edu/plp/conf/SPLC.html

[13]D. Batory and S. O’Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Transactions on Software
Engineering and Methodology, 1(4), October 1992, pp. 355-398.

[14] The Open Group, http://www.opengroup.org

[15] Microsoft Corp. http://www.microsoft.com/com

[16] Object Management Group, http://www.omg.org

[17] Sun Microsystems. http://java.sun.com/j2ee

[18]N. Mehta, N. Medvidovic and S. Phadke, Towards a Taxonomy of Software
Connectors, Technical Report, Center for Software Engineering, University of
Southern California, USC-CSE-99-529, 1999.

[19]M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, Upper Saddle River, NJ, 1996.

[20]N. Roodyn and W. Emmerich. An Architecural Style for Multiple Real-Time
Data Feeds. 21st International Conference on Software Engineering (ICSE 99),
Los Angeles, CA, May 1999.

[21] Carzaniga, E. Di Nitto, D. S. Rosenbloom and A. L. Wolf. Issues in Supporting
Event-based Architectural Styles. 3rd International Software Architecture
Workshop (ISAW3), Orlando FL, 1998.

[22]R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead and J. E.
Robbins. A component- and message-based architectural style for GUI software.
IEEE Transactions on Software Engineering, 1996, 22(6), pp. 390-406.

[23]E. Di Nitto and D. Rosenbloom. Exploiting ADLs to Specify Architectural Styles
Induced by Middleware Infrastructures. 21st International Conference on
Software Engineering (ICSE *99), Los Angeles, CA, May 1999.

[24]N. Medvidovic and R. N. Taylor. Exploiting architectural style to develop a
family of applications. In IEE Proceedings Software Engineering, Vol. 144 No 5-
6, October 1997.

[25] B. Boehm, Anchoring the Software Process, IEEE Software, July 1996.

[26]N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and
Environment for Architecture-Based Software Development and Evolution. In
Proceedings of the 21st International Conference on Software Engineering
(ICSE'99), pp. 44-53, Los Angeles, CA, May 16-22, 1999.

System Family Architectures: Current Challenges at
Nokia

Alessandro Maccari and Antti-Pekka Tuovinen

Nokia Research Center
P. O. Box 407
FIN 00045 — NOKIA GROUP
Fax: +358 9 4376 6308
{alessandro.maccari, antti-pekka.tuovinen}@nokia.com

Abstract. We discuss the current state and the future challenges of software
architecture work pertaining to the mobile handset families produced by Nokia.
We identify the most important variance factors in the product set, present some
open problems in the product family development, and outline a case study for
employing the system family technology developed in the ESAPS project to the
development of mobile handsets at Nokia.

Introduction

A mobile phone is a highly software-intensive system. The effectiveness of the
development of its software is vital in terms of the time and cost. Organizing products
in families where the software components are reused across the whole family of
products offers possibilities for significant economical gains. In such an environment,
the central problem is managing the product variability and the architectural evolution
implied by new requirements [Kuusela99].

The system family (or product-line) approach appears as a promising way to
systematically manage the development of product variants in a cost-effective way.
Recently, the ESAPS project (Engineering Software Architectures, Processes and
Platforms for System Families) [ESAPS] was launched with the aim to introduce the
system family approach to European organizations of various types and sizes. Nokia
is one of the industrial partners of the project. As a part of ESAPS, this work aims at
investigating the issues that pertain to the introduction of the system family approach
in the development of mobile handsets at Nokia.

In the following, we first identify the variance factors of the Nokia phones and
discuss the current state and some of the challenges of software architecting at Nokia
focussing on system family related issues. Then, we present an outline for an
industrial-level case study that tries to apply the system family approach at Nokia. In
the case study, we will employ the techniques developed in ESAPS for system family
engineering.

K. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 107-115, 2000.
© Springer-Verlag Betlin Heidelberg 2000

108 A. Maccari and A.-P. Tuovinen

Issues in System Family Architecture of Nokia Products

The product set of Nokia is vast. Currently, more than a hundred different models are
available in the market, and this number continuously increases (see [Nokiaweb] for
the updated list).

It is not difficult to recognize that such a lengthy list may be organized into
families of systems that share common features. However, the distribution of the
variance makes it hard to get a clear picture of the architecture of the family.

This is mainly due to the complexity and interrelations between several types of
variance factors.

Identifying Variance Factors

A number of variance factors can be traced in a typical mobile phone manufacturer’s
product set. The most important ones are listed below. The examples obviously refer
to Nokia’s product set.

The Handset Category

According to the targeted customer and the price level, mobile handsets (especially
those that use a digital protocol for transmission) usually possess remarkably different
features.

We usually refer to low-end, or mass products, intended for a large audience,
primarily of young age. Such products are marketed based on aspect and some
peculiar features (such as image messaging for GSM-based SMS).

The next category is high-end, intended for a specialized audience that is willing to
pay more for better services, and accepts complexity of use in exchange.

Finally, niche products, such as personal digital assistants (PDA), sit at the top of
the price range, and combine the functionality of mobile handsets with that of
personal organizers.

Products belonging to different categories share the basic common features,
usually those present in the low-end products. However, this is not always true, as, in
some cases, specific, peculiar features are present only in low-end products, and not
in the others. This is the case, for instance, with the Navi™ universal function key,
whose presence affects practically all user interaction features. This makes the
categories fuzzy, and renders architecting and design of the relating families
problematic.

Communication Standard (Protocol)
Due to the presence of numerous, incompatible wireless communication standards, all
mobile handsets should have a variant that supports every protocol, thus enabling
them to function (and be sold!) in different places. The transmission frequency is also
a variance factor.

The most common standards in digital cellular telephony are GSM 900 (where 900
indicates that the frequency is 900 MHz), GSM 1800, GSM 1900, TDMA, CDMA
and PDC. Usually, handset support only one or a few (maximum three) such

System Family Architectures: Current Challenges at Nokia 109

standards. Multiple-standard phones are sometimes referred to as dual band, with
GSM 900/1800 being the most notable.

The variance introduced by the different protocols is more complex than it seems:
not only is the way the signal is encoded and decoded different, but the services
offered by the network standards (and thus those that have to be supported by the
handsets) also vary significantly.

The main example is perhaps SMS messaging (short text messaging), a function
that is supported only by GSM networks.

TDMA and CDMA generally have fewer additional services. Japanese PDC,
instead, has some peculiar features that pose complex requirements on the handset
software. An example is the direct number feature, used to redirect data calls. This
function has to be performed by the phone, since the PDC network standard, used in
Japan, does not distinguish between data and voice calls.

This situation will not ease up with the adoption of the 3 generation (3G)
networks (that will be based on the WCDMA protocol). On the contrary, the
interaction between the existing features and those that are going to be introduced will
increase both the complexity of the system-level requirements and the number of
services available (e.g. video, multimedia).

User Interface

Usability of mobile handsets is one of the main problems that manufacturers have to

face with increasing dedication: the number of offered services is increasing, and the

intended audience is growing at a fast pace. The majority of new mobile subscribers
belong to the non-expert category, and the market imposes that the handsets allow
easy and fast use of the available features.

The Navi™ universal function key, which appears in all Nokia’s new low-end
products, is an example. It is a soft, context-sensitive key, that allows access to the
supposedly most important function, according to the status of the phone. For
example, when the phone detects an incoming call and starts ringing, pressing the
Navi™ key will answer the call; instead, when the user is writing a text message, it
will activate the send message function.

This UI concept is somewhat an extension of Nokia’s high-end products solution:
two soft function keys, that increase the possibilities of navigation through the menus
and double the number of functions that are accessible with a single keystroke, but, on
the other hand, increase complexity of use. Such products are intended for users with
a higher degree of expertise, who accept having to fiddle with manuals and easily get
familiar with multiple function keys.

Along with the soft-keys, several other variance factors (that concern the whole
user interface) exist throughout our mobile handset product set. Examples are:

e The size and resolution of the display, that may (and do) vary across the product
set. Accordingly, both the type and amount of displayable information and the
interaction with the user may change.

e Different ways of activating functions. For instance, the call answering function
can be activated by pressing a key on the keyboard, or by pressing the headset
button (when the headset is connected), or, in products with a sliding keyboard
cover, by flipping the cover open. These possibilities may change or extend when
different hardware solutions.are adopted.

110 A. Maccari and A.-P. Tuovinen

e The presence of different types of keys. An example is the roller™ key that
recently appeared for the first time in Nokia’s 7100 series: it enables a mouse-like
bi-directional navigation of the display.

With the adoption of wide band networks, and the consequent possibility to transmit

higher amounts of data, the user interface will have to support features like video,

high-quality audio and multimedia. Thus, these and other variance factors will be
adding on, causing an increase in complexity of an already problematic area such as
the user interface.

Operating System Services

Mobile handsets rely on a lightweight set of operating system services. They mainly
concern hardware resource (power, transmission, memory, etc.) management, as well
as manufacturing- and maintenance-related services.

However, the evolution in the user features has generated an increase in complexity
of the operating systems. New services, such as audio, video and email, must be
handled directly by the OS layer. The introduction of dual-band devices (that operate
“intelligently” in two frequencies, according to the quality of the signal and the
vicinity of the base-station) is another source of complexity.

Additional requirements will be posed by the introduction of the common, open
operating system platforms — in our and several other cases, Symbian’s EPOC
[Symbianweb]. They will provide new services that will partly replace the existing
ones. Sound architectural decisions will have to be made when structuring the future
3G EPOC-based product families that shall constitute a milestone in Nokia’s product
evolution.

Customer and Country Customization

Nokia now sells products in over a hundred countries. This brings up the need for
customization, due both to customer standards and to modifications adopted in
different places.

Mobile handsets are sold either through local operators (as is the case in the UK
and USA), or directly to the final users.

In the former case (products sold through the operator), and sometimes also in the
latter case, some operator-specific customization is required, mainly to integrate the
services offered by the handset with those offered by the network. This is the case, for
instance, for the SMS-message-based Internet access services, offered through
Nokia’s Artus platform [Artusweb], available currently only in some products and in
selected networks. Another example is security related to the SIM (Subscriber
Identity Module) card, which univocally identifies subscribers in GSM networks:
some operators pose sophisticated requirements on such processes as SIM card
authentication, that have to be supported by phones and networks operating locally.

In either case, the most complex (and, unfortunately, also the most common)
customization relates to support for local languages. In particular, supporting
ideogram-based languages (such as Chinese and Japanese), Arabic and its variations
(where the characters are positional), languages based on the Cyrillic alphabet and
Hebrew (just to name a few) requires the user interface (keyboard, display) and
memory management to be utterly complex. This is mainly due to the fact that
handsetsmprocessandstoreinformationsusing the Western transliteration. For

System Family Architectures: Current Challenges at Nokia 111

languages where the western transliteration is not univocal, that is, different words
transliterate into the same western word, and/or vice versa, this generates obvious
problems.

This type of variance spreads across the whole product set (with the exception of
products that are not sold in certain “problematic” countries). As long as mobile
handset users spread worldwide, managing such issues will be increasingly arduous.

Open Problems

The complexity of the variance factors listed in the previous sections makes it
difficult for us to architect, structure, design and model system families. In particular,
we feel that future research should concentrate on a number of key areas related to
system families.

Requirements Management and Engineering

The lifecycle of products reflects the evolution of the requirements set. Inadequate or

poor requirements management and engineering practices inevitably lead to problems

in the product, or family, architecture.

Elicitation and capturing are the initial phases. At such early stages of product
development, the problem mainly resides in that there is no clear idea of the position
of the relating product(s) inside the family.

Consequently, during the requirements modeling and system architecting phase,
the similarities and differences with other existing and future products cannot possibly
be well defined.

This situation usually leads to problems when the software is implemented:

e At times, work is duplicated, i.e. similar or identical components are implemented
separately in different places.

e The architectural patterns are loose: the same system-level requirements may
correspond to different design solutions in different products.

e The need for family architecting is recognized only late during product design,
when it becomes clear that common features need to be identified and variance
factors modeled.

The requirements management and engineering community has so far failed to deliver

sufficiently exhaustive answers to the above problems, especially as the

telecommunications domain is concerned [Maccari99]. Researchers should put more
effort on industrial needs and realities when carrying out their work [Fenton94].

Structuring System Families with Variance
At the moment, the management of product variance within product families is based
on distributing requirement specifications for specific products in the hope that the
people responsible for the product development projects will notice the commonalties
in different products. A more systematic approach is clearly needed. The variance
factors and their relationship to the architecture of the family must be made explicit.
Our research group [Karhinen98] has presented an approach to organizing design
decisions in an explicit hierarchy, a design decision tree, which can be used to analyze
the implications of architectural changes. Perhaps similar hierarchical structures could
be used to organize the variance factors pertaining to a product family.

112 A. Maccari and A.-P. Tuovinen

Modeling Product Families

Due to the complexity and spectrum of the variance factors, we have so far

experienced difficulties in finding a unique, effective way to model product families.
The ideal modeling technique should have the following characteristics.

e Not cause too big burden for the architects and developers to learn and use.

e Provide an efficient and practical means of communications between the different
stakeholders of a system or system family.

e Be based on some standard or well known modeling language (e.g. UML).

e Provide effective means for representing the multidimensional diversity in variance
explained in section 2.1.

Recently, a number of European industrial and research organizations have

recognized the need to act jointly to address the problems stated in the previous

sections (and others that pertain to different domains). The ESAPS project is one of

the first large-scale efforts in this direction.

Directions for ESAPS

ESAPS is a large European project that is a part of the Eureka program. The aim of
the project is to introduce the system-family approach of software engineering to
European industry. The results of the project comprise of processes, methods and
tools, and component platforms for system-family engineering. The participants of the
project include a number of major European companies that produce software-
intensive systems and several research institutions.

The work in ESAPS is divided into four work packages. The first three packages
(analysis, processes and methods, derivation of products) provide the techniques,
methods, and tools to be validated by the fourth work package in industrial settings
through case studies.

We intend to use the results from ESAPS to address some of the problems
described in section 2. Therefore, we are currently planning a case study to be
conducted in the development of the software for mobile phones. In the following, we
outline the study.

A Nokia Case Study: The EPOC-Based System Family

As the Nokia case study for work package 4 of ESAPS, we propose the development
of the software for the family of mobile terminals that will run on the new EPOC
operating system platform developed by Symbian [Symbianweb]. EPOC represents a
major step in mobile terminal technology that will promote modularity and
application-oriented development of mobile phones. EPOC will provide a
technological base for component-based software development, customizable user
interfaces, color support, fit-for-purpose application suites, advanced Internet
connectivity, and PC connectivity software.

The reasons for choosing this family are:
e The architectural work on the EPOC family is just starting.

System Family Architectures: Current Challenges at Nokia 113

e The development process of the family is in a phase where the study can provide
real impact.

e Many new product categories (families) are expected to be developed on EPOC,
which brings in new variance factors.

The problem with the EPOC case is that the architectural work should be started

before any deliverables can be expected from the three first work packages from

ESAPS. However, the previous experiences in software architecture work (e.g. the

ARES project [ARES]) will help us to start working with the EPOC family.

For instance the ARES conceptual framework for software architecture (ARES
CFSA) [Ran00] gives a model that system developers can follow when designing the
architecture of new software. The framework distinguishes the different planes of
existence of software (design or write, build, configuration, re-start, and execution)
and the component domain of each plane (e.g. modules are write plane components
and threads are execution plane components). For each component domain, the
architecture is then modeled through four facets: architecturally significant
requirements, conceptual model, structures (components and composition), and
texture (recurring microstructure). The strength of the CFSA framework appears to
be in the comprehensive treatment of the sources of complexity in software-intensive
products. However, concrete tools, for instance, modeling languages, are out of the
scope of the CFSA.

Research Goals and Approach

As stated above, the goal of the study is to investigate the effects of adopting the
system-family approach developed in ESAPS. Due to resource considerations and the
development status of the EPOC family, we will concentrate on the specification and
modeling of the reference architecture for the system-family. A special emphasis will
be given on modeling family-level requirements and on the tracing of requirements
into the architecture, which is the key problem area. As a formal result, a report will
be delivered for the ESAPS-project reporting the findings of the study.

The study will be conducted while the researchers are working as advisors of the
system architects of Nokia. This means in-depth exposure to the phenomena
concerning the architecture development process. This will also make it possible to
see the development process from the system architect’s point of view. According to
[Orlikowski91], our approach can be characterized as interpretive because instead of
having a pre-defined set of constructs and instruments for measuring the effects of the
system family approach, we will try to describe, interpret, analyze, and understand the
studied phenomena from the participant’s (the Nokia system architects) point of view.
The danger in this kind of research is that it will be reduced into reporting experiences
about what works and what does not work without deeper analysis and suggestions
for improvement. We must a make a conscious effort to avoid this trap, for instance,
by getting the developers at Nokia to be involved in the creation of the final report.

114 A. Maccari and A.-P. Tuovinen

Research Tasks

Because the first three work packages of ESAPS have not yet delivered their results, it
is not possible to device a detailed research plan. According to our current
understanding, the generic list of research tasks and their ordering is:

1. Identify the common features, variance factors, and family-level requirements in
the EPOC-based family.

2. Model the identified common features, variability, and requirements.

3. Design the domain specific reference architecture for the family (and build a
formal model).

4. Collect and record the experience data.

5. Analyse and disseminate the results; identify problem for further investigation.

Hopefully, during task 4, early results from ESAPS will be available. Note that
collecting of the research data (experiences) must be a continuous process in this kind
of study.

Concluding Remarks

The purpose of this paper was to give an overview of the issues pertaining to the
software architecture work in the development of the product families of Nokia’s
mobile handsets. We presented the major categories of variance factors in the domain
of mobile handsets and discussed the most important problems in the product family
development. Then, we described a case study that attempts to introduce a systematic
approach to system family development in Nokia according to the methodologies and
techniques developed in ESAPS.

References

[ARES] http://sirio.dit.upm.es/~ares/ and http://hpv17.infosys.tuwien.ac.at/ARES/.

[Artusweb] http://www.nokia.com/networks/17/napf.html.

[ESAPS] Engineering Software Architectures, Processes and Platforms for System Families.
ITEA project no 99005, Eureka X! 2023 Programme. See http://www.esi.es/esaps/.

[Fenton94] N. Fenton, S. Lawrence Pfleger, R. L. Glass, Science and substance: a challenge to
software engineers, IEEE Software, July 1994, pp. 86-95.

[Karhinen98] A. Karhinen, J. Kuusela, Structuring Design Decisions for Evolution, in
proceedings of the Second International ESPRIT ARES Workshop, Spain, LNCS 1429,
Springer, 1998, pp. 223-234.

[Kuusela99] J. Kuusela, Architectural evolution, Nokia Mobile Phones case, in Software
Architecture, edited by Patrick Donohoe, Kluwer Academic Publishers, Boston, USA, 1999.

[Maccari99] A. Maccari, The challenges of requirements engineering in mobile telephones
industry, proceedings of DEXA99, Third International Workshop on Database and Expert
Systems Applications, IEEE Computer Society, 1999.

[Nokiaweb] http://www.nokia.com/.

System Family Architectures: Current Challenges at Nokia 115

[Orlikowski91] W. Orlikowski, J. J. Baroudi, Studying information technology in
organizations, research approaches and assumptions, Information Systems Research 2:1,
1991.

[Ran00] Alexander Ran, ARES conceptual framework for software architecture. Chapter 1 in
M. Jazayeri, A. Ran and F. Linden (eds.), Software Architecture for Product Families,
Addison-Wesley, 2000.

[Symbianweb] http://www.symbian.com/.

u..JL: '}u‘l
b

Product Family Methods

Paul Clements

Software engineering Institute, Carnegy Mellon University
Pittsburg, PA 15213, USA
clements@sei.cmu.edu

The Product Family Methods session dealt with how to achieve product family results
by solving the practical problems of organization, approach, and process. Organizing
for Software Product Lines (Jan Bosch, U. of Karlskrona/Ronneby) exemplified this
by describing several different organizational structures observed in actual case
studies of organizations using the product family approach. For each organizational
scheme presented, its advantages and disadvantages were described, along with
conjectures about the size and type of organization in which that scheme would be
most effective.

In Comparison of Software Product Family Process Frameworks, Tuomo
Vehkomaki and Kari Kansala of Nokia Research Center tried to clear up the
confusion among the many process improvement frameworks that exist in the
community, and draw conclusions about how each applies to helping initiate, follow,
and optimize the process for the product family situation. CMM, SPICE, ISO 9000-3,
IEEE 1074, J-STD-016, SE-CMM, IEEE 1220, and EIA/IS-632 were all discussed,
and comparisons and contrasts drawn. In the product line realm, the SEI’s Product
Line Practice Framework, SPC’s Synthesis method, Jacobson’s Reuse-driven
Software Engineering Business approach, and a couple of product line frameworks
based on SPICE were all analyzed. The result of the comparison was the proposal for
a generic product line process framework, drawing upon the best features of all of the
others.

In Issues Concerning Variability in Software Product Lines, Mikael Svahnberg and
Jan Bosch (U. Karlskrona/Ronneby) tackled the problem of handling component and
other artifact variability in the architecture and supporting infrastructure. Product
lines work by using common assets to build a variety of products, and those assets
must almost always be tailored (varied) along pre-planned paths in order to serve their
purpose in each product. Svahnberg and Bosch lay out several variation mechanisms
that are commonly used in product lines. Common mechanisms include inheritance,
extensions and extension points, parameterization, using module interconnection
languages to vary the system’s configuration, and automatic generation of tailored
source code.

Finally, in A First Assessment of Development Processes with respect to Product
Lines and Component Based Development, Rodrigo Ceron, Juan C. Duenas, and Jun
A. De la Puente (Unversidad Politecnica de Madrid) evaluates the Rational Unified
Process in light of its ability to support the development of product lines. The
evaluation is performed by comparing RUP to known development methods that
address part of the product line situation: component development, and reuse-driven
software engineering business (and other reuse methods). The authors conclude that
what is most needed is more practical experience with the method, although they
point out that UML has well-known shortcomings with respect to being able to
support the specification of variation points, and that the RUP could be improved with
respect to its ability to handle “imported” components provided by outside sources.

F. van der Linden (Ed.): TW-SAPF-3, LNCS 1951, p. 116, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Organizing for Software Product Lines

Jan Bosch

University of Karlskrona/Ronneby
Department of Software Engineering and Computer Science
SoftCenter, S-372 25, Ronneby, Sweden
Jan.Bosch@ipd.hk-r.se

Abstract

Software product lines have received increasing amounts of attention within the
software engineering community, especially from industry. Most authors focus
on the technical and process aspects and assume an organizational model con-
sisting of a domain engineering unit and several application engineering units. In
our cooperation with several software development organizations applying soft-
ware product line principles, we have identified several other organizational
models that are employed. This article presents a number of organizational mod-
els, organized in four main approaches, i.e. development department, business
units, domain engineering units and hierarchical domain engineering units. For
each approach, its characteristics, applicability and advantages and disadvan-
tages are discussed, as well as an example.

1 Introduction

Achieving reuse of software has been a long standing ambition of the software engi-
neering industry. Every since the paper by [8], the notion of constructing software sys-
tems by composing software components has been pursued in various ways. Most
proposals to achieving component-based software development assume a market
divided into component developers, component users and a market place. However,
this proved to be overly ambitious for most types of software. In response, there has
been a shift from world-wide reuse of components to organization-wide reuse. Parallel
to this development, the importance of an explicit design and representation of the
architecture of a software system has become increasingly recognized. The combina-
tion of these two insights lead to the definition of software product lines. A software
product line consists of a product line architecture, a set of reusable components and a
set of products derived from the shared assets.

Existing literature on software product lines tends to focus on the technology and
the processes that surround product line based software development. These processes
include the design of the software architecture for the product line, the development of
the shared software components, the derivation of software products and the evolution
of the aforementioned assets. However, generally the organizational structure of soft-
ware development organizations that is needed for the successful execution of these

F. van der Linden (Ed:): IW-SAPF-3, LNCS 1951, pp. 117-134, 2000.
© Springer-Verlag Berlin Heidelberg 2000

118 J. Bosch

processes is not discussed. It is, nevertheless, necessary to impose an organization on
the individuals that are involved in the product line.

In this article, we discuss a number of organizational models that can be applied
when adopting a product line based approach to software development. For each
model, we describe in what situations the model is most applicable, the advantages and
disadvantages of the model and an example of a company that employs the model.
Below, we briefly introduce the models that will be discussed in the remainder of the
chapter:

* Development department When all software development is concentrated in
a single development department, no organizational specialization exists with
either the system family assets or the systems in the family. Instead, the staff at
the department is considered to be resource that can be assigned to a variety of
projects, including domain engineering projects to develop and evolve the reus-
able assets that make up the system family.

* Business units: The second type of organizational model employs a specializa-
tion around the type of systems. Each business unit is responsible for one or a
subset of the systems in the family. The business units share the system family
assets and evolution of these assets is performed by the unit that needs to incor-
porate new functionality in one of the assets to fulfil the requirements of the
system or systems it is responsible for. On occasion, business units may initiate
domain engineering projects to either develop new shared assets or to perform
major reorganizations of existing assets.

* Domain engineering unit: This model is the suggested organization for soft-
ware families as presented in the traditional literature, e.g. [5] and [7]. In this
model, the domain engineering unit is responsible for the design, development
and evolution of the reusable assets, i.e. the software architecture and the com-
ponents that make up the reusable part of the system family. In addition, busi-
ness units, often referred to as system or application engineering units, are
responsible for developing and evolving the systems built based on the system
family assets.

* Hierarchical domain engineering units In cases where an hierarchical prod-
uct line has been necessary, also a hierarchy of domain units may be required.
In this case, often terms such as ‘platforms' are used to refer to the top-level
system family. The domain engineering units that work with specialized prod-
uct lines use the top-level family assets as a basis to found their own family
upon.

Some factors that influence the organizational model, but that we have not mentioned
include the physical location of the staff involved in the system family, the project
management maturity, the organizational culture and the type of systems. In addition
to the size of the system family in terms of the number of systems and system variants
and the number of staff members, these factors are important for choosing the optimal
model.

Organizing for Software Product Lines 119

The remainder of this paper is organized as follows. In section 2 until 5, the four
aforementioned organizational models are discussed in more detail. Section 6 dis-
cusses the aforementioned factors and their effects on selecting the optimal organiza-
tional model. Finally, related work is discussed in section 7 and the article is concluded
in section 8.

2 Development Department

The development department model imposes no permanent organizational structure on
the architects and engineers that are involved in the software product line. All staff
members can, in principle, be assigned to work with any type of asset within the fam-
ily. Typically, work is organized in projects that dynamically organize staff members
in temporary networks. These projects can be categorized into domain engineering
projects and application (or system) engineering projects. In the former, the goal of the
project is the development of a new reusable asset or a new version of it, e.g. a soft-
ware component. The goal is explicitly not a system or product that can be delivered to
internal or external customers of the development department. The system engineering
projects are concerned with developing a system, either a new or a new version, that
can be delivered to a customer. Occasionally, extensions to the reusable assets are
required to fulfil the system requirements that are more generally applicable than just
the system under development. In that case, the result of the system engineering
project may be a new version of one or more of the reusable assets, in addition to the
deliverable system.

In figure 1, the development department model is presented graphically. Both the
reusable product line assets and the concrete systems built based on these assets are
developed and maintained by a single organizational unit.

devel op rrert dep artreent
architedure cormpon et

| reusable

0 @00
L ets
0 (a@ -

—i—\
il @g

seotern | seshern 2

Figure 1. Development department model

120 J. Bosch
2.1 Applicability

The development department model is primarily applicable for relatively small organi-
zations and for consultancy organizations, i.e. organizations that sell projects rather
than products to their customers. Based on our experience, our impression is that this
model works up to around 30 software-related staff members in product-based organi-
zations. If the number of staff members exceeds 30, generally some kind of organiza-
tional restructuring is required anyhow, independent of the use of a product line.

2.2 Advantages and disadvantages

The development department model has, as most things in life, a number of advantages
and disadvantages. The primary advantage is simplicity and ease of communication.
Since all staff members are working within the same organizational context, come in
contact with all parts of the system family and have contact with the customers, the
product line can be developed and evolved in a very efficient manner with little organ-
izational and administrative overhead. A second advantage is that, assuming that a
positive attitude towards reuse-based software development exists within the depart-
ment, it is possible to adopt a software product line approach without changing the
existing organization, which may simplify the adoption process.

The primary disadvantage of this approach is that it is not scalable. When the
organization expands and reaches, e.g., around 30 staff members, it is necessary to
reorganize and to create specialized units. A second disadvantage is that typically
within organizations, staff members are, depending on the local culture, more inter-
ested in either domain engineering or system engineering, i.e. it has higher status in the
informal organization to work with a particular type of engineering. The danger is that
the lower status type of engineering is not performed appropriately. This may lead to
highly general and flexible reusable components, but systems that do not fulfil the
required quality levels, or visa versa.

2.3 Example

A company that employs this organizational model is Securitas Larm, Sweden. All
their product development, i.e. hardware and software, is concentrated in a single
development department. This department maintains a product line in the domain of
fire-alarm systems, as described in [2]. The department has an engineering staff about
25 persons, so it fits our applicability requirement. In fact, up to a number of years ago,
development was organized in product business units. Each product unit was responsi-
ble for sales, marketing, installation and development of the product. However, espe-
cially development did not function well in this organizational form. Generally only up
to five engineers worked with the product development, which was to few to create an
effective development organization. Consequently, Securitas Larm decided to reorgan-
ize development into a single development department.

Organizing for Software Product Lines 121

3 Business units

The second organizational model that we discuss is organized around business units.
Each business unit is responsible for the development and evolution of one or a few
products in the software product line. The reusable assets in the product line are shared
by the business units. The evolution of shared assets is generally performed in a dis-
tributed manner, i.e. each business unit can extend the functionality in the shared
assets, test it and make the newer version available to the other business units. The ini-
tial development of shared assets is generally performed through domain engineering
projects. The project team consists of members from all or most business units. Gener-
ally, the business units most interested in the creation of, e.g. a new software compo-
nent, put the largest amount of effort in the domain engineering project, but all
business units share, in principle, the responsibility for all common assets.

Depending on the number and size of the business units and the ratio of shared ver-

sus system specific functionality in each system, we have identified three levels of
maturity, especially with respect to the evolution of the shared assets:
Unconstrained model. In the unconstrained model, any business unit can extend the
functionality of any shared component and make it available as a new version in the
shared asset base. The business unit that performed the extension is also responsible
for verifying that, where relevant, all existing functionality is untouched and that the
new functionality performs according to specification.

A typical problem that companies using this model suffer from is that, especially
software components, are extended with too system-specific functionality. Either the
functionality has not been generalized sufficiently or the functionality should have
been implemented as system-specific code, but for internal reasons, e.g. implementa-
tion efficiency or system performance, the business unit decided to implement the
functionality as part of the shared component.

These problems normally lead to the erosion or degradation of the component, i.e.
it becomes, over time, harder and less cost-effective to use the shared component,
rather than developing a system-specific version of the functionality. As we discussed
in [2], some companies have performed component reengineering projects in which a
team consisting of members from the business units using the component, reengineers
the component and improves its quality attributes to acceptable levels. Failure to reen-
gineer when necessary may lead to the situation where the product line exists on paper,
but where the business units develop and maintain system-specific versions of all or
most components in the product line, which invalidates all advantages of a software
product line approach, while maintaining some of the disadvantages.

Asset responsibles. Especially when the problems discussed above manifest them-
selves in increasing frequency and severity, the first step to address these problems is
to introduce asset responsibles. An asset responsible has the obligation to verify that
the evolution of the asset is performed according to the best interest of the organization
as a whole, rather than optimal from the perspective of a single business unit. The asset
responsible is explicitly not responsible for the implementation of new requirements.
This task is still performed by the business unit that requires the additional functional-
ity. However, all evolution should occur with the asset responsible's consent and

122 J. Bosch

before the new version of the asset is made generally accessible, the asset responsible
will verify through regression testing and other means that the other business units are
at least not negatively affected by the evolution. Preferably, new requirements are
implemented in such a fashion that even other business units can benefit from them.
The asset responsible is often selected from the business unit that makes most exten-
sive and advanced use of the component.

Although the asset responsible model, in theory at least, should avoid the problems

associated with the unconstrained model, in practice it often remains hard for the asset
responsible to control the evolution. One reason is that time-to-market requirements
for business units often are prioritized by higher management, which may force the
asset responsible to accept extensions and changes that do not fulfil the goals, e.g. too
system-specific. A second reason is that, since the asset responsible does not perform
the evolution him or herself, it is not always trivial to verify that the new requirements
were implemented as agreed upon with the business unit. The result of this is that com-
ponents still erode over time, although generally at a lower pace than with the uncon-
strained model.
Mixed responsibility. Often, with increasing size of the system family, number of
staff and business units, some point is reached where the organization still is unwilling
to adopt the next model, i.e. domain engineering units, but wants to assign the respon-
sibility for performing the evolution assets to a particular unit. In that case, the mixed
responsibility model may be applied. In this model, each business unit is assigned the
responsibility for one or more assets, in addition to the system(s) the unit is responsible
for. The responsibility for a particular asset is generally assigned to the business unit
that makes the most extensive and advanced use of the component. Consequently,
most requests for changes and extensions will originate from within the business unit,
which simplifies the management of asset evolution. The other business units have, in
this model, no longer the authority to implement changes in the shared component.
Instead, they need to issue requests to the business unit responsible for the component
whenever an extension or change is required.

The main advantage of this approach is the increased control over the evolution
process. However, two potential disadvantages exist. First, since the responsibility for
implementing changes in the shared asset is not always located at the business unit that
needs those changes, there are bound to be delays in the development of systems that
could have been avoided in the approaches described earlier. Second, each business
unit has to divide its efforts between developing the next version of their system and of
the component(s) it is responsible for. Especially when other business units have
change requests, these may conflict with the ongoing activities within the business unit
and the unit may prioritize its own goals over the goals of other business units. In addi-
tion, the business unit may extend the components it is responsible for in ways that are
optimized for its own purposes, rather than for the organization as a whole. These
developments may lead to conflicts between the business units and, in the worst case,
the abolishment of the product line approach.

Conflicts. The way the software product line came into existence is, in our experience,
an important factor in the success or failure of a family. If the business units already
exist and develop their systems independently and, at some point, the software product

Organizing for Software Product Lines 123

line approach is adopted because of management decisions, conflicts between the busi-
ness units are rather likely because giving up freedom that one had up to that point in
time is generally hard. If the business units exist, but the product line gradually evolves
because of bottom-up, informal cooperation between staff in different business units,
this is an excellent ground to build a product line upon. However, the danger exist that
when cooperation is changed from optional to obligatory, tensions and conflicts appear
anyhow. Finally, in some companies, business units appear through an organic growth
of the company. When expanding the set of systems developed and maintained by the
company, at some point, a reorganization into business units is necessary. However,
since the staff in those units earlier worked together and used the same assets, both the
product line and cooperation over business units develop naturally and this culture
often remains present long after the reorganization, especially when it is nurtured by
management. Finally, conflicts and tensions between business units must resolved by
management early and proactively since they imply considerable risk for the success
of the product line.

In figure 2, the business unit model is presented graphically. The reusable system-
family assets are shared by the business units, both with respect to use as well as to
evolution.

3.1 Applicability

As discussed in section 2, when the number of staff members is too low, e.g. below 30,
the organization in business units is often not optimal since too few people are working
together and the communication overhead over unit boundaries is too large. On the
other hand, our hypothesis, based on a number of cases that we have studied, is that
when the number of staff members exceeds 100, domain engineering units may
become necessary to reduce the n-to-n communication between all business units to a
one-to-n communication between the domain engineering unit and the system engi-
neering units. Thus, with respect to staff size, we believe that the optimal range for the
business unit model is between 30 and 100, although this, to a large extent, depends on
the specific context as well.

3.2 Advantages and disadvantages

The advantage of this model is that it allows for effective sharing of assets, i.e. soft-
ware architectures and components, between a number of organizational units. The
sharing is effective in terms of access to the assets, but in particular the evolution of
assets (especially true for the unconstrained and the asset responsible approaches). In
addition, the approach scales considerably better than the development department
model, e.g. up to 100 engineers in the general case.

The main disadvantage is that, due to the natural focus of the business units on sys-
tems (or products), there is no entity or explicit incentive to focus on the shared assets.
This is the underlying cause for the erosion of the architecture and components in the
system family. The timely and reliable evolution of the shared assets relies on the

124 J. Bosch

organizational culture and the commitment and responsibility felt by the individuals
working with the assets.

b sin &<z unit b sin ==z un it

gl
L]

spstern 2 !
architedure comnpones :rlzumHzl"
O QA

JHlaay)

Ll
L] [

sygterin

spstern 3

busine= unit buzin== unit

Figure 2. Business unit model

3.3 Example

Axis Communications, Sweden, employs the business unit model. Their storage-
server, scanner-server and camera-server products are developed by three business
units. These business units share a common product line architecture and a set of more
than ten object-oriented frameworks that may be extended with system-specific code
where needed. Initially, Axis used the unconstrained model with relatively informal
asset responsibles, but recently the role of asset responsibles has been formalized and
they now have the right to refuse new versions of assets that do not fulfil generality,
quality and compatibility requirements. The assets responsibles are taken from the
business units that make the most extensive and advanced use of the associated assets.
Within the organization, discussions are ongoing whether an independent domain
engineering unit, alternatively, a mixed responsibility approach are needed to guaran-
tee the proper evolution of assets. Whenever new assets or a major redesign of some
existing asset is needed, Axis has used domain engineering projects, but ‘disguised'
these prOJects as system engmeermg pI‘OJCCtS by developing prototype systems. The

ion of the new asset with the existing assets is
- A d I
- -

ngineering project.

Organizing for Software Product Lines 125
4 Domain Engineering Unit

The third organizational model for software product lines is concerned with separating
the development and evolution of shared assets from the development of concrete sys-
tems. The former is performed by a, so-called, domain engineering unit, whereas the
latter is performed by system engineering units. System engineering units are some-
times referred to as application engineering units.

The domain engineering unit model is typically applicable for larger organizations,
but requires considerable amounts of communication between the system engineering
units, that are in frequent contact with the customers of their systems, and the domain
engineering unit that has no direct contact with customers, but needs a good under-
standing of the requirements that the system engineering units have. Thus, one can
identify flows in two directions, i.e. the requirements flow from the system engineer-
ing units towards the domain engineering unit and the new versions of assets, i.e. the
software architecture and the components of system family, are distributed by the
domain engineering unit to the system engineering units.

The domain engineering unit model exists in two alternatives, i.e. an approach
where only a single domain engineering unit exists and, secondly, an approach where
multiple domain engineering units exist. In the first case, the responsibility for the
development and evolution of all shared assets, that software architecture and the com-
ponents, is assigned to a single organizational unit. This unit is the sole contact point
for the system engineering units that construct their systems based on the shared
assets.

The second alternative employs multiple domain engineering units, i.e. one unit
responsible for the design and evolution of the software architecture for the product
line and, for each architectural component (or set of related components), a component
engineering unit that manages the design and evolution of the components. Finally, the
system engineering units are, also in this alternative, concerned with the development
of systems based on the assets. The main difference between the first and second alter-
native is that in the latter, the level of specialization is even higher and that system
engineering units need to interact with multiple domain engineering units.

In figure 3, the organizational model for using domain engineering unit is pre-
sented. The domain engineering unit is responsible for the software architecture and
components of the product line, whereas the system engineering units are responsible
for developing the systems based on the shared assets.

4.1 Applicability

Especially smaller companies are very sceptical of domain engineering units. One of
the concerns is that, just because domain engineering units are concerned with reusa-
ble assets, rather than systems that are relevant for customers, these units may not be as
focused on generating added value, but rather lose themselves in aesthetic, generic, but
useless-abstractionss-However;-based-on-ous experience, our impression is that when
the number of staff members working within a system family exceeds around 100 soft-
ware engineers, the amount of overhead in the communication between the business

126 J. Bosch

units causes a need for an organizational unit or units specialized on domain engineer-
ing.

Multiple rather than a single domain engineering unit become necessary when the
size of the domain engineering unit becomes too large, e.g. more than 30 software
engineers. In that case, it becomes necessary to create multiple groups that focus on
different component sets within system family software architecture. In some cases,
although component engineering units exist, no explicit system family software archi-
tecture unit is present. Rather, a small team of software architects from the component
engineering units assumes the responsibility for the overall architecture.

Finally, at which point the complexities of software development even exceed the
domain engineering unit approach is not obvious, but when the number of software
engineers is in the hundreds the hierarchical domain engineering units model, dis-
cussed in the next section, may become feasible.

daornain engineering unit

ul'-:hl‘hech.lle i:crnEn:-nem: %\.
—-. | reusable
O@QUd G|z
il

[+
N

I'*-.__ sydermn 1 .u'h:m 2
= shern en gineering unit =yshern en gin e=ring unrf wd\emen_-jneering unit

Figure 3. The domain engineering unit model

4.2 Advantages and disadvantages

Despite the scepticism in, especially smaller organizations, the domain engineering
unit model has a number of important advantages. First, as mentioned, it removes the
need for n-to-n communication between the business units, and reduces it to one-to-n
communication. Second, whereas business units may extend components with too sys-
tem-specific extensions, the domain engineering unit is responsible for evolving the
components such that the requirements of all systems in the product line are satisfied.
In addition, conflicts can be resolved in a more objective and compromise-oriented
fashion Finally; therdomainiengineering unit approach scales up to much larger num-
bers of software engineering staff than the aforementioned approaches.

Organizing for Software Product Lines 127

Obviously, the model has some associated disadvantages as well. The foremost is
the difficulty of managing the requirements flow towards the domain engineering unit,
the balancing of conflicting requirements from different system engineering units and
the subsequent implementation of the selected requirements in the next version of the
assets. This causes delays in the implementation of new features in the shared assets,
which, in turn, delays the time-to-market of systems. This may be a major disadvan-
tage of the domain engineering unit model since time-to-market is the primary goal of
many software development organizations. To address this, the organization may
allow system engineering units to, at least temporarily, create their own versions of
shared assets by extending the existing version with system-specific features. This
allows the system engineering unit to improve its time-to-market while it does not
expose the other system engineering units to immature and instable components. The
intention is generally to incorporate the system-specific extensions, in a generalized
form, into the next shared version of the component.

4.3 Example

The domain engineering unit model is used by Symbian. The EPOC operating system
consists of a set of components and the responsibility of a number of subsets is
assigned to specialized organizational units. For each device family requirement defi-
nition (DFRD), a unit exists that composes and integrates versions of these compo-
nents into a release of the complete EPOC operating system to the partners of
Symbian. The release contains specific versions and instantiations of the various com-
ponents for the particular DFRD. Some components are only included in one or a few
of the DFRDs.

5 Hierarchical Domain Engineering Units

As we discussed in the previous section, there is an upper boundary on the size of an
effective domain engineering unit model. However, generally even before the maxi-
mum staff member size is reached, often already for technical reasons, an additional

level has been introduced in the software product line. This additional layer contains
one or more specialized product lines that, depending on their size and complexity can

either be managed using the business unit model or may actually require a domain

engineering unit.

In the case that a specialized product line requires a domain engineering unit, we have,
in fact, instantiated the hierarchical domain engineering units model that is the topic of
this section. This model is only suitable for a large or very large organization that has
an extensive family of products. If, during the design or evolution of the product line,

it becomes necessary to organize the product line in a hierarchical manner and a con-
siderable number of staff members is involved in the product line, then it may be nec-
essary to create specialized domain _engineering units that develop and evolve the

reusable assets for a subset of the systems in the family.

128 J. Bosch

The reusable product line assets at the top level are frequently referred to as a platform
and not necessarily identified as part of the product line. We believe, however, that it is
relevant to explicitly identify and benefit from the hierarchical nature of these assets.
Traditionally, platforms are considered as means to provide shared functionality, but
without imposing any architectural constraints. In practice, however, a platform does
impose constraints and when considering the platform as the top-level product line
asset set, this is made more explicit and the designers of specialized product lines and
family members will perform derive the software architecture rather than design it.

In figure 4, the hierarchical domain engineering units model is presented graphically.
For a subset of the systems in the product line, a domain engineering unit is present
that develops and maintains the specialized product line software architecture and the
associated components. Only the components specific for the subset in the product line
are the responsibility of the specialized domain engineering unit. All other components
are inherited from the overall product line asset base. The specialized domain engi-
neering unit is also responsible for integrating the specialized with the general reusable
assets.

dormain &ngineenng unit

architechure cormponerts
reusable
aoaE
Farmnily

ag)~

deomain engineering unit
architecure mn-p cnents

specialized I—%‘E a a
systern family |

v

systernin

sestern 2 =y stern en gineering wnit

spstermn 1

=yshern &ngin e=ring wnit = e angin e=ring unit

Figure 4. Hierarchical domain engineering unit model

Ol Ll Zyl_ﬂbl

Organizing for Software Product Lines 129
5.1 Applicability

As mentioned in the introduction, the hierarchical domain units model becomes the
preferred model when the number and variability of systems in the family is large or
very large and considerable numbers of staff members, i.e. hundreds, are involved.
Consequently, the model is primarily suitable in large organizations and long-lived
systems in the family, since the effort and expenses involved in building up this organ-
izational model are substantial.

The complexities involved in the implementation and use of this organizational
model are beyond the scope of this article, but a considerable maturity with respect to
software development projects is required for this approach to succeed. This model is
the fourth and most complex model that we discuss and if the product line cannot be
captured within this model, it is reasonable to assume that the scope of the family has
been set too wide.

5.2 Advantages and disadvantages

The advantages of this model include its ability to encompass large, complex product
lines and organize large numbers of engineers. None of the organizational models dis-
cussed earlier scales up to the hundreds of software engineers that can be organized
using this model.

The disadvantages include the considerable overhead that the approach implies and
the difficulty of achieving agile reactions to changed market requirements. For
instance, in the case of a system part of a specialized product line that, in its turn, is
part of the top level product line, a change in a top level component required for
addressing a market opportunity or threat may take considerable amounts of synchro-
nization effort. When this occurs, a delicate balance needs to be found between allow-
ing system engineering units to act independent, including the temporary creation of
system-specific versions of product line components, versus capitalizing on the com-
monalities between products and requiring system engineering units to use shared ver-
sions of components.

5.3 Example

Although we are aware of companies applying this model as part of their product line
development, we currently have no permission to mention any.

6 Influencing Factors

Up to this point, we have presented the size of the product line and the engineering
staff involved in the development and evolution of the product line as the primary fac-
torsiimrselecting therappropriaterorganizational model. Although, in our experience, the
above factors indeed are the most prominent, several factors exist that should be

130 J. Bosch

allowed to influence the selection decision as well. Below, we present some factors
that we have identified in industry as relevant in this context.

6.1 Geographical distribution

Despite the emergence of a variety of technological solutions aiming at reducing the
effects of geographical location, e.g. telephone, e-mail, video conferencing and distrib-
uted document management, the physical location of the staff involved in the software
product line still plays a role. It simply is more difficult to maintain effective and effi-
cient communication channels between teams that are in disparate locations and, per-
haps even, time zones, than between teams that are local to each other. Therefore, units
that need to exchange much information should preferably be located closer to each
other than units that can cooperate with less information.

For instance, geographical distribution of the teams developing the systems in the
family may cause a company to select the domain engineering unit model because it
focuses the communication between the domain engineering unit and each system
engineering unit, rather than the n-to-n communication required when using the busi-
ness unit model.

6.2 Project management maturity

The complexity of managing projects grows exponentially with the size of the project
(in virtually any measure). Therefore, the introduction of a software product line
approach requires, independent of the organizational model, a relatively high level of
maturity with respect to project management. Projects need to be synchronized over
organizational boundaries and activities in different projects may be depending on
each other, which requires experience and pro-activeness in project management.

To give an example, incorporating new functionality in a product line component
at Axis Communications requires communication with the other business units at the
start, the actual execution and at the end of the project. At the start because it should be
verified that no other business unit is currently including the same or related function-
ality. During the project, to verify that the included functionality and the way in which
it is implemented are sufficiently general and provide as much benefit as possible to
the other business units. After the end of the project, to verify that the new version of
the component provides backward compatibility to systems developed by the other
business units.

6.3 Organizational culture

The culture of an organization is often considered to be hard to use concept, which is
obviously the case. However, the attitude that each engineer has towards the tasks that
he-ot she.is-assigned-to-do-and-the.-value-patterns exhibited by the informal organiza-
tional groups have a major influence on the final outcome of any project. Thus, if a
kind of "cowboy" or "hero' culture exists in which individual achievements are valued

Organizing for Software Product Lines 131

higher than group achievements, then this attitude can prove to be a serious inhibitor of
a successful software product line approach that is highly dependent on a team culture
that supports interdependency, trust and compromise.

For instance, at one company, which will remain unnamed, we discussed the intro-
duction of a software product line approach. The company had extensive experience in
the use of object-oriented frameworks and within each business unit reuse was wide-
spread and accepted. However, when top management tried to implement product line
based reuse, business unit managers revolted and the initiative was cancelled. The rea-
son, it turned out, was that each business unit would have to sacrifice its lead archi-
tect(s) for a considerable amount of time during the development of the reusable
product line assets. In addition, the conversion would delay several ongoing and
planned projects. These two effects of adopting a product line approach would, among
others, lead to highly negative effects on the bonuses received by, especially, business
unit management. One explanation could be that these managers were selfish people
that did not consider what was best for the company as a whole. However, our expla-
nation is that top management had, under many years, created a culture in which busi-
ness units were highly independent profit centres. This culture conflicted directly with
the product line approach top management tried to introduce.

6.4 Type of systems

Finally, an important factor influencing the optimal organizational model, but also the
scope and nature of the system family, is the type of systems that make up the family.
Systems whose requirements change frequently and drastically, e.g. due to new tech-
nological possibilities, are substantially less suitable for large up-front investments
that a wide scoped, hierarchical software product line approach may require, than sys-
tems with relatively stable requirement sets and long lifetimes. Medical and telecom-
munication (server-side) systems are typical systems that have reasonably well
understood functionality and that need to be maintained for at least a decade and often
considerably longer.

For instance, we earlier discussed the possibility for consultancy companies that
typically are project based to adopt a software product line approach. Since subsequent
projects often are in the same domain, the availability of a product line architecture
and a set of reusable components may substantially reduce lead time and development
cost. However, the investment taken by such a company to develop these assets can
never be in the same order of magnitude as a product-based company with clear mar-
ket predictions for new products. The consultancy company has a significantly higher
risk that future projects are not in exactly the same domain, but an adjacent, invalidat-
ing or at least reducing the usefulness of the developed assets. Consequently, invest-
ment and risk always need to be balanced appropriately.

132 J. Bosch

7 Related Work

As we discussed in the introduction, most publications in the domain of software prod-
uct lines address issues different from the organizational ones. Macala et al. [7] and
Dikel et al. [5] were among the first publications that describe experiences from using
software product lines in an industrial context. Although the authors do address organ-
izational, management and staffing issues, both assume the domain engineering unit
model and present it as the de-facto organizational model. Jacobsen et al. [6] also dis-
cuss organizational issues, but focus on a number of roles that should be present and
do not address the overall organization of software product line based development. In
[4], the authors address organizational issues of software product line. The authors
identify four functional groups, i.e. the architecture group, the component engineering
group, the product line support group and the product development group. The authors
identify that these functional groups may be mapped to organizational units in various
ways. Finally, Bayer et al. [1] discuss a methodology for developing software product
lines and discuss organizational guidelines, but no organizational models.

8 Conclusion

In this article, we have discussed four organizational models for software product lines
and discussed, based on our experiences, the applicability of the model, the advantages
and disadvantages and an example of an organization that employs the particular
model. Below, the four models are briefly summarized:

* Development department: In this model software development is concen-
trated in a single development department, no organizational specialization
exists with either the software product line assets or the systems in the family.
The model is especially suitable for smaller organizations. We have seen suc-
cessful instances of this model up to 30 software engineers. The primary advan-
tages are that it is simple and communication between staff members is easy,
whereas the disadvantage is that the model does not scale to larger organiza-
tions.

* Business units: The second type of organizational model employs a specializa-
tion around the type of systems in the form of business units. The business units
share the product line assets and evolution of these assets is performed by the
unit that needs to incorporate new functionality in one of the assets to fulfil the
requirements of the system or systems it is responsible for. Three alternatives
exist, i.e. the unconstrained model, the asset responsibles model and the mixed
responsibility model. The model is often used as the next model in growing
organizations once the limits of the development department model are
reached. Some of our industrial partners have successfully applied this model
up to 100 software engineers. An advantage of the model is that it allows for
effective sharing of assets between a'set of organizational units. A disadvantage

Organizing for Software Product Lines 133

is that business units easily focus on the concrete systems rather than on the
reusable assets.

* Domain engineering unit: In this model, the domain engineering unit is
responsible for the design, development and evolution of the reusable assets,
i.e. the software architecture and the components that are make up the reusable
part of the software product line. In addition, system engineering units are
responsible for developing and evolving the systems built based on the product
line assets. The two alternatives include the single domain engineering unit
model and the multiple domain engineering units model. In the latter case, one
unit is responsible for the product line architecture and others for the reusable
software components. The model is widely scalable, from the boundaries where
the business unit model reduces effectiveness up to several hundreds of soft-
ware engineers. One advantage of this model is that it reduces communication
from n-to-n in the business unit model to one-to-n between the domain engi-
neering unit and the system engineering units. Second, the domain engineering
unit focuses on developing general, reusable assets which addresses one of the
problems with the aforementioned model, i.e. too little focus on the reusable
assets. One disadvantage is the difficulty of managing the requirements flow
and the evolution of reusable assets in response to these new requirements.
Since the domain engineering unit needs to balance the requirements of all sys-
tem engineering units, this may negatively affect time-to-market for individual
system engineering units.

* Hierarchical domain engineering units In cases where an hierarchical prod-
uct line has been necessary, also a hierarchy of domain units may be required.
The domain engineering units that work with specialized product lines use the
top-level assets as a basis to found their own product line upon. This model is
applicable especially in large or very large organizations with a large variety of
long-lived systems. The advantage of this model is that it provides an organiza-
tional model for effectively organizing large numbers of software engineers.
One disadvantage is the administrative overhead that easily builds up, reducing
the agility of the organization as a whole, which may affect competitiveness
negatively.

Finally, we have discussed a number of factors that influence the organizational
model that is optimal in a particular situation. These factors include geographical dis-
tribution, project management maturity, organizational culture and the type of sys-
tems.

References

[1] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen,
J.M. DeBaud, ‘PuLSE: A Methodology to Develop Software Product
Lines, Symposium on Software Reuse, 1999.

[2] Jan Bosch, ‘Product-Line Architectures in Industry: A Case Study’, Pro-

134 J. Bosch

(8]

ceedings of the 21st International Conference on Software Engineering
pp- 544-554, May 1999.

Jan Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product Line Approach, Addison Wesley Longman (forthcom-
ing), ISBN 0-201-67494-7, May 2000.

P. Clements, L. Northrop, ‘A Framework for Software Product Line Prac-
tice - Version 1.0°, Software Engineering Institute, Carnegie Mellon, Sep-
tember 1998.

D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, ‘Applying Software
Product-Line Architecture,” IEEE Computer, pp. 49-55, August 1997.

1. Jacobsen, M. Griss, P. Jonsson, Software Reuse - Architecture, Process
and Organization for Business Success, Addison-Wesley, 1997.

R.R. Macala, L.D. Stuckey, D.C. Gross, ‘Managing Domain-Specific
Product-Line Development,” IEEE Software, pp. 57-67, 1996.

M. D. Mcllroy, ‘Mass Produced Software Components,’ in ‘Software En-
gineering,” Report on A Conference Sponsored by the NATO Science
Committee, P. Naur, B. Randell (eds.), Garmisch, Germany, 7th to 11th
October, 1968, NATO Science Committee, 1969.

A Comparison of Software Product Family Process
Frameworks

Tuomo Vehkomiki, Kari Kidnsald

Nokia Research Center
Helsinki, Finland
tuomo.vehkomaki@nokia.com, kari.kansala@nokia.com

Abstract: A number of product family process frameworks has
been published recently. These frameworks focus on different
aspects of product family based development. We have investigated
a variety of publicly available product family frameworks and
chosen four of the variants for maximum coverage of different
viewpoints. We first propose a reference product line process
framework. With the help of the reference framework, the chosen
source frameworks are correlated and compared at the level of
individual activities. Both in the reference framework and in the
comparison, we stress domain engineering as one of the most
essential activities.

Introduction

The objective of this study is to create a generic software product line process
framework that can be used as a reference model to compare product line
approaches known by today's industry. The objective has not been to create
another process framework, but a benchmark of existing frameworks. The generic
framework is best used to organize references to the actual information sources,
such as the compared product family process frameworks, or proprietary process
descriptions within a specific industry.

The product line approaches of interest to us represent rather different
viewpoints. Therefore the generic framework needs to be comprehensive enough
to allow mapping between product line approaches with different coverage.

In our terminology, the Generic Product Line Process (GPLP) covers the actual
software development cycle for all levels of granularity: systems, products,
platforms, and components. The term Generic Product Line Process Framework
(GPLPF) includes GPLP plus supporting process categories i.e. the transition to
product line, product portfolio management, and third party product acquisition
and subcontracting.

The section 2 of this text introduces the source frameworks that contribute to
the generic product line process framework and the comparison. Section 3

F. van der Linden (Ed.): TW-SAPE-3, INCS 1951, pp. 135-145, 2000.
© Springer-Verlag Berlin Heidelberg 2000

136 T. Vehkomiki and K. Kénséld

describes the generic product line process framework and section 4 compares the
source frameworks with the proposed reference framework.

Source Frameworks

We have initially investigated traditional software and systems engineering
frameworks. With emergence of frameworks that explicitly deal with product
lines, we have included those frameworks in our comparison.

Using SPICE v2.0 [SPICE96] as a skeleton, an extensive comparison of
existing software and systems engineering frameworks was presented in 1997
[Nystrom97]. The compared frameworks are listed in Table 1. Based on the
comparison and existing software processes in Nokia Business Units, a
customized version of SPICE v2.0 called NRC Software Process Framework was
developed at Nokia Research Center [Kénsdld99]. A typical model of industrial
product process categories based on SPICE is illustrated in Figure 1.

y 4
-
‘

3rd Paty
Procduct

Fig. 1. Typical product process framework. The software processes support development of
systems that are composed of four layers: system, product, platform, and component. The
depicted framework does not yet include product-line specific activities.

Table 1. Software and systems engineering models compared by Nystom [Nystrom97].

PF Full name Status / Released
Version
SPICE Software Process Improvement and V2.0 1996
Capability dEtermination
CMM SW Capability Maturity Model/ SEI V1.1 1993
1SO 9000-3 Guidelines for the Application of ISO Draft 1996
9001 to the Design, Development, International

Standard

A Comparison of Software Product Family Process Frameworks

137

ISO 12207
IEEE 1074

J-STD-016

SE-CMM

IEEE 1220

EIA/IS-632

Software Life Cycle Processes

Standard for Developing Software
Life Cycle Processes

Standard for Information Technology,

Software Life Cycle Processes, Soft-

ware Development and Acquirer-Sup-

plier Agreement
Systems Engineering Capability Ma-
turity Model/ SEI

Standard for Application and Man-
agement of the Systems Engineering
process

Systems Engineering

Interim
Standard

VI.1

Trial-use

Interim
Standard

1995
1995

1995

1995

1994

1994

The 1997 comparison is used as a background for the comparison of software
product line process related models. Starting in the early 90’s and more frequently
since 1997, several frameworks related to software product lines have been
published. A representative set of product line frameworks is listed in Table 2 and
summarized in the rest of this section. The listed frameworks are included in the
comparison of Section 4.

Table 2. Software product line process frameworks of our comparison.

Framework Full name [reference] Status / Released
Version
GPLP Generic Product Line Process (see Initial Mar-00
section 3.)
SEI FSPLP Software Engineering Institute: V2.0 Jul-99
Framework for Software Product
Line Practice / [Clements99]
Synthesis, Domain-specific Engineering (DsE) Presented in Apr-99
DsE [Campbell99] based on Synthesis Reuse99
[RSP93]
RSEB Reuse-driven SW Engineering Book / ACM Jun-97
Business [Jacobson97] Press
SPICE, NRC Nokia Research Center Software V1.1 May-98
SPF Process Framework [Kansidlda99]
based on SPICE v2.0 [SPICE96]

SEI Framework for Software Product Line Practice
The approach used by SEI is to identify foundational concepts underlying
software product lines and activities to be considered when creating a product line
[Clements99]. The listed practice areas comprise an extensive set of competencies
and issues necessary to consider for successful adoption of product line based
reuse. The viewpoint supports product line planning and management, rather than
gives concrete instructions on implementing specific engineering tasks.

138 T. Vehkomiki and K. Kénséld

Synthesis and Domain-specific Engineering

Synthesis [RSP93] by Software Productivity Consortium is an extensive
description of processes related to domain engineering. Synthesis also includes
creation of process support for the application engineering. Synthesis does not
explicitly address transition to product line based reuse but describes two process
variants for different levels of organizational reuse capability.

Domain-specific Engineering (DsE) continues from the basis of Synthesis and
relies on parallel domain engineering and application engineering activities in the
traditional way of domain engineering. In addition to plain domain engineering,
Domain-specific Engineering has explicit activities of domain management,
process engineering, and project support [Campbell99].

Reuse-driven Software Engineering Business
Reuse-driven Software Engineering Business (RSEB) [Jacobson1997] describes a
systematic model for implementing reuse. The description is tightly coupled with
object-oriented analysis and design, the Unified Modeling Language (UML) and
layered software architecture. Instructions on how to do analysis, design,
implementation, and validation are given and less effort is put on management
issues. For a mature organization, the approach may be used as a guide to
implement reuse.

The actual process is a derivative of the traditional Domain
Engineering/Application Engineering split and has separate activities for
e Application Family Engineering
e Component System Engineering
e Application System Engineering.
Application Family Engineering and Component System Engineering can be
considered two separate variations of accustomary domain engineering.
Application Family Engineering works at a high level of abstraction to develop a
conceptual model and a common layered architecture for all product line
members. Component System Engineering works at lower level of abstraction to
develop functional building blocks for the layered product platform.

In addition to engineering activities, RSEB also includes an explicit set of
activities that support the transition to reuse.

NRC Software Process Framework
Being based on SPICE, NRC Software Process Framework [Kinsdld99] is a
traditional software engineering process framework which does not cover the
product family dimension i.e. it deals with single systems only. The framework
consists of 29 processes partitioned to five categories:

e Customer-supplier process category

¢ Engineering process category

e Support process category

e Management process category

¢ Organization process category

Being comprehensive also beyond engineering activities, it complements the
product line approaches presented above. The customer-supplier process category
supports transition of the software to the customer and its correct operation and

A Comparison of Software Product Family Process Frameworks 139

use. Together with various maintenance activities, these processes are not covered
well by the product line approaches.

Generic Product Line Process Framework

The comparison of software product family process frameworks is based on a
Generic Product Line Process Framework that is described in this section. The
generic framework consists of process categories for product line management,
domain engineering, application engineering, and third party product acquisition.

Corresponding to the traditional product process framework of Figure 1, the
Generic Product Line Process Framework reflects creation of systems that are
composed of four layers: system, product, platform, and component.

Components and 3* party products are parts of a whole. They may be used as
building blocks of any of the upper layers. Platforms have a double role: from a
product viewpoint, they are components as they are integrated with some
application functionality to build products. From the component viewpoint,
platforms are similar to products as they typically consist of several components
that have been integrated together. Finally, systems are solutions that consist of
several products.

The process categories and their relations to each other and to created work
products are illustrated in Figure 2. Compared to the previous model of Figure 1,
this model replaces the Component/Platform Engineering process category with
domain engineering, which may produce reusable assets for all levels of the
layered systems. As domain engineering builds competence on the application
area, domain engineering can give input to the portfolio management and
management of 3" party products. Domain engineering also interacts directly with
the application engineering process groups.

AE1. System Engineering

AE2. Produdt Engineering

Maonage- s
¥ ment - : . .
& % E Apdlioction Engneering
3 dc
= 3
DE2. Component Engineering
— Domcin Engineering
PLM2.
Tronsition
toProcuct
Line

3rd Paty

Product

Fig. 2. Process categories of the proposed Generic Product Process Framework. The central
part of the figure represents the actual Software Product Line Process.

ol Lalu Zyl_ﬂbl

140 T. Vehkomiki and K. Kénsild

Activity Groups

Product Line Management
(PLM)

PLM1. Product Portfolio
Management

PLM2. Transition to Product
Line

Domain Engineering (DE)

DE1. Product Line
Engineering

DE2. Component
Engineering

Application Engineering
(AE)

AEL. System Engineering

The product line management process category contains
activities related to establishing and managing the
product line.

Creates visions and requirements for new products. This
includes gathering requirements from the customers,
market research, and technology research..

The transition process is temporary and not necessary
after the product line infrastructure has been established.
The transition process includes organizational planning
and planning for competence creation. Reuse maturity
assessment may be used to determine the organization’s
current reuse capability [Adoption93].

Domain Engineering is the activity to produce reusable
assets. Domain Engineering is essentially orthogonal to
the layered system-product-platform architecture and
supports producing reusable components for all of the
layers.

Domain Engineering can play two roles: Product Line
Engineering and Component Engineering. In the
comparison, however, Domain Engineering is treated as a
single activity group.

Product Line Engineering is the variation of Domain
Engineering for the entire product family. Product Line
engineering concentrates on analysis of concepts
common to all applications and design of common
architecture for the complete product line.

Component Engineering is the variation of domain
engineering for a specific area of functionality or
knowledge. Typically these areas represent the
organization’s technical core competencies. The resulting
assets may be reused in all levels of the system-product-
platform hierarchy.

The term Application Engineering refers to the activities
that generate new applications utilizing the assets created
by Domain Engineering. In our terminology, there are
two types of applications that have different creation
processes: products and systems.

System Engineering is the activity to create systems
utilizing reusable assets. Systems are solutions that
consist of several products. Based on system
requirements, System Engineering develops systems by
integrating products.

ring is the activity to create products
omponents, and other reusable
be supplied directly to the end-

A Comparison of Software Product Family Process Frameworks 141

customers or integrated to compose systems.

Third Party Product This activity group creates 3" party product by
Acquisition and acquisition of COTS components or through
Subcontracting (TPS) subcontracting. As the components produced by the

Component Engineering activity, 3 party products may
be used in all levels of the layered systems.

Comparison

This comparison illustrates the coverage of the source frameworks compared to
the Generic Product Line Product Process Framework. The comparison also maps
the activities of the compared frameworks to the common terminology defined by
the generic framework. The activity groups listed above are refined to consist of
individual activities that make the rows of the comparison matrix. The columns
represent different product line process frameworks. Their individual activities are
distributed within the column to match the activities of the generic framework on
the right column.

Table 3 shows an overview of the mapping without the names of the individual
activities from the compared frameworks. The purpose of this overview is to
illustrate which activities of the generic framework have been addressed by each
of the compared frameworks.

Table 4 is an extract of the complete mapping to further illustrate details related
to the Domain Engineering activity group. Note that RSEB defines two variations
of domain engineering: Application Family Engineering and Component System
Engineering. This separation corresponds to Product Line Engineering and
Component Engineering activities of Figure 2.

For further details on domain analysis techniques, comparisons of plain domain
analysis techniques have been published by Arango [Arango93] and by DeBaud
and Schmid [DeBaud98].

Table 3. Coverage of compared SW product line process frameworks. One asterisk
indicates some correspondence and two asterisks indicate good match with the activity
named in the left column.

SEI FSPLP Synthesis,| RSEB |[SPICE, NRC
DsE SPF

PLML1. Product Portfolio
Management
Product Line Scoping Hk wE o
Domain Management ok oE ok
PLM2. Transition to Product Line
Develop Organizational Strategy o ok *
Model Current Process * * ok
Develop Product Line Process * ok woE *
Implement Product Line Process S ok *

142 T. Vehkomiki and K. Kénséld

Develop Metrics

ek

DE. Domain Engineering

Domain Scoping

ek

ek

Domain Analysis

ek

Domain Verification

ok

Mine Assets

ek

Domain Design

ke

ek

ek

Architecture Evaluation

ek

Domain Implementation

ok

ok

ok

Integration and Testing

ek

ek

ek

Domain Support

ek

AELl. System Engineering

Analyze Requirements

Design

Implement

Integrate and Test

Package

*| ¥| ¥

Supply

Support

ek

AE2. Product Engineering

Analyze Requirements

kk

K3k

Design

3k

3k

Implement

3k

k3k

Integrate and Test

K3k

3k

K3k

K3k

Package

Maintain

3k

TPS. Third Party Product
Acquisition, Subcontracting

COTS Utilization

Develop and Implement Acquisition
Strategy

ek

Subcontractor Management

ek

Table 4. Detailed mapping of activities within Domain Engineering activity group.

SEI FSPLP | Synthesis, RSEB: RSEB: SPICE, NRC
DsE Application| Component SPF
Family System
Engineerin | Engineering
g
Domain TMP2. DE.1.
Scoping Product Line |Domain
Scoping Managemen
t
DE.2.1.
Domain
Definition

A Comparison of Software Product Family Process Frameworks 143
Domain SEP1. Domain|DE.2.2. AFE1: CSEl: ENG.1
Analysis Analysis Domain Analyzing |Capturing Develop
Specificatio |requirement |requirements [product
n s that have |focusing on |requirements
an impact on|variability and design
the
architecture
AFE2: CSE2: ENG.2
Performing |Performing |Develop SW
robustness [robustness requirements
analysis analysis to
maximize
flexibility
Domain DE.2.3
Verification Domain
Verification
Mine Assets [SEP2. Mining
Existing
Assets
Domain SEP3. DE.2.2.4 AFE3: CSE3: ENG.3
Design Architecture |Product Designing |Designing the |Develop SW
Exploration |(Family) the layered |component design
and Definition |Design system system
coordination
Architecture |SEP4.
Evaluation Architecture
Evaluation
Domain DE.3.1. AFE4: CSE4: ENG.4
Implementati Product Implementin (Implementing |Implement
on (Family) g the the component [SW design
Implementat |architecture |system
ion as a layered
system
SEP5. COTS
Utilization
Integration |SEP6. DE.2.3 AFE5: CSES: Testing |[ENG.5
and Testing |Software Domain Testing the |the component |Integrate and
System Verification |layered system test SW
Integration system
coordination
DE.4.1 CSEG6: Final |[ENG.6
Domain packaging of |Integrate and
Validation the component |test product
system for
reuse
Domain OMP3. DE.4.2
Support Training Domain
Delivery
OMPs.
Launching
and
Institutionalizi
ng a Product
Line

144 T. Vehkomiki and K. Kénsild

TMPI. Data |[DE.3.2. TRAG:
Collection, Process Continuous
Metrics and |Support process
Tracking Developmen [improvemen
t t
TMP3. ENG.7
Configuration Maintain
Management product and
SW

Summary and Outlook

We have presented a Generic Product Line Process Framework and compared four
publicly available product process approaches with the help of this generic model.
The developed framework reflects the product structure of our industry and the
compared product family process frameworks represent viewpoints that we
consider important.

The comparison shows that the coverage of actual software engineering
activities is rather complete by all of the compared frameworks. Deficiencies exist
in management and other supporting categories and in the acquisition of 3" party
products. The system engineering field is only covered by NRC SPF. The SEI
FSPLP covers all the other categories well. The weaknesses of Synthesis are the
transition process and the 3" party product acquisition process but it has the best
coverage of domain engineering activities. RSEB does not cover 3" party product
acquisition. NRC SPF has the best coverage of customer support and maintenance
activities but lacks several of reuse-oriented activities.

The first public version of the comparison is based on the work at Nokia
Research Center. Further developmend of the model is to continue in an European
ESAPS (Engineering Software Architectures, Processes and Platforms for System-
Families) project during 2000-2001 [ESAPS].

Acknowledgements

The authors would like to thank prof. Jukka Paakki for his comments on the
manuscript.

References

[Adoption93] Reuse Adoption Guidebook, SPC-93051-CMC, Software Productivity
Consortium, Herndon, VA, 1993.

[Arango94] G. Arango, Domain Analysis Methods, in Software Reusability (W. Shaefer, R.
Prieto-Diaz, and M. Matsumoto, eds.), Ellis Horwood, 1994.

[Campbell99] Grady H. Campbell, Jr., Reuse-driven Process Improvement. The first
European Annual Conference on Reuse, London, April 1999.

A Comparison of Software Product Family Process Frameworks 145

[Clements99] Clements P, Northrop L, et.al., A Framework for Software Product Line
Practice — Version 2.0, SEI, July 1999, (http://www.sei.cmu.edu/plp/framework.html).
[DeBaud98] Jean-Marc DeBaud and Klaus Schmid, A Practical Comparison of Major
Domain Analysis Approaches - Towards a Customizable Domain Analysis Framework,
In Proceedings of the Tenth Conference on Software Engineering and Knowledge
Engineering, 1998.

[ESAPS] Engineering Software Architectures, Processes and Platforms for System-
Families, European EUREKA/ITEA project, (http://www.esi.es/esaps/).

[Jacobson97] Jacobson I, Griss M, and Jonsson P, Software Reuse. Architecture, Process
and Organization for Business Success, ACM Press, New York, June 1997.

[Kénsdla99] Kinsidld, Kari . Practices for Managing a Corporate-wide SPI Programme,
European SEPG Conference, Amsterdam, The Netherlands, 7-10 June 1999.

[Nystrom97] Nystrom T, Comparison of Software Reference Processes Definitions,
Master's thesis, HUT, 1997. 66 p.

[RSP93] Reuse-driven Software Processes Guidebook, SPC-92019-CMC, Software
Productivity Consortium, Herndon, VA, November 1993.

[SPICE96] SPICE, Software Process Assessment Part 5: An assessment model

and indicator guidance ISO/IEC/JTC1/SC7/WG10/N111, V2.0, October 1996,

(http://www.sqi.gu.edu.au/spice/).

ol LN ZJL?H

Issues Concerning Variability in Software
Product Lines

Mikael Svahnberg! and Jan Bosch?

! University of Karlskrona/Ronneby
Department of Software Engineering and Computer Science,
S-372 25 Ronneby, Sweden, Mikael.Svahnberg@ipd.hk-r.se

URL: http://www.ipd.hk-r.se/msv/

2 University of Karlskrona/Ronneby
Department of Software Engineering and Computer Science,
S-372 25 Ronneby, Sweden, Jan.Bosch@ipd.hk-r.se
URL: http://wuw.ipd.hk-r.se/jbo/

Abstract. Product-line architectures, i.e. a software architecture and
component set shared by a family of products, represents a promising
approach to achieving reuse of software. Several companies are initiating
or have recently adopted a product-line architecture. However, little ex-
perience is available with respect to the evolution of the products, the
software components and the software architecture. Due to the higher
level of interdependency between the various software assets, software
evolution is a more complex process. In this paper we discuss issues
regarding variability that may help or cause problems when designing
solutions for managing variability.

1 Introduction

In Sweden today, many companies already employ object-oriented techniques,
such as design patterns and object oriented frameworks, and many are prepared
to take the next step towards wide-scale reuse of software. A logical next step is
software product lines, in which components and architecture can be reused over
a number of applications. The software product-line defines a software architec-
ture shared by the products and a set of reusable components that, combined,
make up a considerable part of the functionality of the products. Much of the
research efforts today regarding product line architectures is directed towards
the initiation of a product line, and as a consequence, its evolution is not as well
studied. One of the major issues regarding evolution is variability, i.e. how the
product line allows for and facilitates the differences between the products in
the product line. This paper presents and discusses some of the problems and
issues that are relevant for any scheme that proposes to handle variability in soft-
ware product lines. Moreover, we discuss the techniques available for introducing
variability into the software product line.

ibuti i i e believe, that it presents the forces that
n selecting a technique to implement

pp. 146-157, 2000.

Issues Concerning Variability in Software Product Lines 147

variability. By increasing our understanding of software product line evolution
as a result of incorporating new products and evolving the existing products,
more efficient and effective support for variability can be provided.

The remainder of this paper is organized as follows. In the next section, we
present our terminology, in order to help the understanding of the rest of the
paper. In section 3, we present some observations made during a number of case
studies regarding product line development. In section 4, we present techniques
available for implementing variability, and discuss these with respect to where
they are applicable. Related work is presented in section 5, and the paper is
concluded in section 6.

2 Owur View of Products, Architecture, and Software
Product Lines

We define a software product line as consisting of a software product line ar-
chitecture, a set of reusable components and a number of software products.
The products can be organized in many ways, and the architectural variations
are organized accordingly. A software product line architecture is a standard
architecture, consisting of components, connectors, and additional constraints,
in conformance to the definition given by Bass et al. [Bass et al., 1998]:

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software compo-
nents, the externally visible properties of those components, and the
relationships among them. [Bass et al., 1998]

The role of the software product line architecture is to describe the commo-
nalities and variabilities of the products contained in the software product line
and, as such, to provide a common overall structure.

A component in the architecture implements a particular domain of func-
tionality, for example, the file system domain, or the network communication
domain. Components in software product lines, in our experience, are often im-
plemented as object-oriented frameworks. A product is, thus, constructed by
composing the frameworks that represent the component in the architecture.

We define a framework to consist of a framework architecture, and one or
more concrete framework implementations. This interpretation of a framework
holds well in a comparison to Roberts’ and Johnson’s [Roberts and Johnson,
1996] view, in which a white box framework can be mapped to our framework
architecture, and a black box framework consists of several of our framework
implementations in addition to the framework architecture.

The products in the software product line are instantiations of the product
line architecture and of the components in the architecture. There may also be

i i ind, generally, product-specific code is

148 M. Svahnberg and J. Bosch

3 Characteristics of Evolution

In previous studies [Svahnberg and Bosch, 1999a,Svahnberg and Bosch, 1999b]
we have found several development characteristics that influence how variability
is handled in software product lines. Below, we present and discuss these traits
further.

The structure is static. This may seem to have very little to do with variability,
but the fact that components stay in a particular place in a product line ar-
chitecture makes it possible to rule out some types of variability, i.e. where the
components must cope with completely new interfaces. The reason for why a
software product line keeps a more or less static architecture is, we believe, that
there are so many products that depend on a particular architecture - indeed,
the entire development organization may depend on a particular architecture -
that it is very costly to modify the overall structure of all systems. This means
that not only do most products share the same overall architecture, this archi-
tecture remains the same as the products evolve as well. The implications this
has on variability is that components do not necessarily have to be able to adapt
to new situations, i.e. to be placed in new environments with new, unknown
peers to operate with, and new connections to previously unknown components.
It is sufficient that they can manage interaction with the set of components that
they were originally designed to work with. Instead, effort can be put into en-
suring that the components can manage variants of other components, i.e. that
the components they interact with can be instantiated differently, as discussed
below.

Variability on component-level is handled by selecting component implementati-
ons. There exists a number of supporting techniques to handle variability on the
component-level. For example, the configuration management normally works
best with full components, or rather implementations of component interfaces.
This means that different products can use a simple configuration file to get
the desired functionality by checking out entire subsystems, i.e. component im-
plementations, from the source code repository. This type of variability is thus
handled well with today s techniques.

Component interfaces evolve. If we assume the model where a component con-
sists of an abstract interface and one or more concrete implementations of the
interface, this implies that products are extended by adding new component im-
plementations. Such new component implementations may be implementations
of for example new standards, but may also include completely new functionality.
Each new implementation in general implies changes to the abstract interface.
A reason for this is that it is practically not possible to cover all future aspects
of an interface from the beginning. To avoid this problem would require that all
future implementations are analyzed and in effect designed before the product
ine i i is i e not possible. Instead, the interfaces
\atural course.

Issues Concerning Variability in Software Product Lines 149

Previously, we stated that components can be designed with the assumption
that the connections to other components will be fairly static. However, the
evolution of the interfaces speaks against this advice. Changes in the interface
can concern many levels, of which the most obvious are:

— Syntactic change, a method or class changes name, causing a simple search-
and-replace.

— Semantic change, a method or class changes behavior. This may have consi-
derable ripple-effects, and it may not be enough to examine only the place
where the method/class is used. Since the impact of the change needs to
be understood in order to find all places where other components may be
depending on a certain behaviour, this type of changes cannot be done au-
tomatically.

— Growth of the interface. The interface can be extended with new methods or
classes. In general, this does not have to imply anything on the older imple-
mentations, but if the growth results in a framework overlap [Mattsson and
Bosch, 1999], measures must be taken against this.

— Reduction of the interface. Likewise, the interface may shrink, normally be-
cause functionality is broken out into a separate component. As with seman-
tic changes, there may be ripple-effects of this.

Component implementations depend on parts of other components. Normally,
the components in a product line architecture, or indeed any architecture, are
conceptual entities that to the designers seems to be a coherent set of func-
tionality. So is, for example, a component TCP/IP a natural component for a
network-enabled product. As long as storage and execution space is ample this
is not a problem, but as soon as one of these resources are in a short supply,
you will want to scale off anything that is not needed in a particular product. It
is then the other components and their implementations that decide on what is
needed of a particular component. What is needs is thus to be able to, per pro-
duct, configure a component so that only the desired functionality is included.
This may involve restructuring the component architecture, which may not be
trivial. This problem is also discussed by [Osterbye, 1999].

On one hand, one can say that this is the very essence of variability, and on
the other hand, one would want to reduce the problem to one that can more
easily be solved. The latter can be achieved if the component can be split into
several smaller components. This solution also suggests that the most logical
components are not always the correct, and that perhaps components are not the
lowest granularity desired. Rather, what is desired is feature-sets, that together
comprise a logical component.

Evolution follows paths that are not easy to predict. The general guideline is
usually that a list of predicted features spanning at least five years should be
made when designing a software product line [Macala et al., 1996]. In many ca-
is to work; products that are state-of-the-art
the future. What this implies is that

150 M. Svahnberg and J. Bosch

the functional evolution can not be assumed to follow any designed or planned
paths. On the technical side, one can assume that new products will have more
or less the same architecture, and one can assume that the majority of changes
are in the order of creating new component implementations, but modificati-
ons inside the components are simply impossible to predict. This implies that
components can be designed (a) to incorporate any type of change, something
which many agree is not desirable (e.g. [Jacobson et al., 1997]), or (b) to easily
incorporate the planned changes without closing the door for other, unplanned,
modifications.

4 Supporting Techniques

4.1 Levels of Variability

Our experience is that variability occurs at different levels in the design. Spe-
cifically, variability occurs on the product-line level, the architecture level, the
component level, the sub-component level, and on the code level.

— Product Line level. This level is concerned with how different products in
the product line varies.

— Product Level. At the product level, the variability is concerned with the
architecture and choice of components for a particular product.

— Component level. On this level, the variability consists of how to add new
implementations of the component interface, and also how these evolve over
time.

— Sub-component level. As stated earlier, a component consists of a number of
feature sets. On the sub-component level these feature sets are selected to
create the component for a particular product.

— Code level. The code-level is where evolution but also most variability bet-
ween products actually take place.

4.2 Available Techniques

To implement variability into the product line and the components, we have the
means suggested by [Jacobson et al., 1997], namely:

— Inheritance, is used when the variation point is a method that needs to be
implemented for every application, or when an application needs to extend
a type with additional functionality.

— FEzxtensions and extension points, is used when parts of a component can be
extended with additional behaviour, selected from a set of variations for a
particular variation point.

— Parameterization, templates and macros, are used when unbound parameters

ed in the code and later instantiated with
: A d I
13
ol L zy

o the macro.

Issues Concerning Variability in Software Product Lines 151

— Configuration and Module Interconnection Languages, are used to select
appropriate files and fill in some of the unbound parameters to connect
modules and components to each other.

— Generation of derived components, is used when there is a higher level lan-
guage that can be used for a particular task, which is then used to create
the actual component.

In addition to these techniques, we would like to add “ifdefs”, which are used
to at compile-time select between different implementations in the code.

By parameterization is meant that a component or a class is given some in-
itial values that regulates how it is to work. This can be things like a base value,
or even a parameter type. A related concept is code generation. In paramete-
rization the source code is written in traditional ways, and finalized using some
parameters, either at compile-time or at start-up time. In code generation, the
source code is created as a consequence of a number of choices of the software
engineers, and is thus hard-coded to a particular set of parameters.

Two of the techniques related to parameterization are templates and ifdefs,
both language constructs in C++. Templates is a mechanism by which the choice
of types to operate on is delayed until a class is used, rather than when it
is created. For instance, we can have a class LinkedList , that is written so
that it uses a template. When the linked list is later used in a program, the
template class type is replaced with a particular type, for instance Word , which
thus creates a linked list of words. With the exception of some performance
benefits, the same functionality can be achieved using inheritance and abstract
base classes. Preprocessor directives is another feature of C++, which enables
a more fine-grained configuration management. Parts of the source code can be
surrounded by so called ifdef statements, which means that they can at compile-
time be included or excluded from the compiled code.

By configuration is meant the process in which source code is selected from
a code repository and put together to form a particular product. Module Inter-
connection Languages is one way of describing configurations. Once the correct
files are selected, some of the parameterization can also be performed by more
advanced configuration management tools. The final configuration is performed
by the compile utility, using for instance make files.

Inheritance is the standard object oriented way of extending a class with
more behavior by inheriting from it and adding the extra behavior. This allows
for variability by reusing everything that is common to the new application and
only replace or extend with those things that differ. Extensions and extension
points is a more planned way to use inheritance, where several implementations
(i.e. classes that are inherited and implemented from an abstract base class) can
coexist in one application.

Many of the techniques introduced by [Jacobson et al., 1997] can also be
found in Design Patterns [Gamma et al., 1995]. A design pattern is a proven
design solution for a particular problem that has been used in many applications.
It has long been recognized that using design patterns improve the structure
of software, and thus also improves on maintainability and reusability. There

152 M. Svahnberg and J. Bosch

exists design patterns to provide Extensions and extension points, but also for
parameterization. Design patterns rely heavily on the techniques of inheritance
and extensions, but also, to some extend, on parameterization.

4.3 Applicability of Techniques

The levels of variability provides, in a way, a development method, starting from
the large picture and moving down to the source code level. Below, we discuss
the levels of variability from the perspective of creating a product, and what
the expected variability is on each level. We also discuss how well the available
techniques can solve the expected variability issues on each level.

Product Line Level. On the product line level, what is done is to select a
set of components for a product from a component repository. Product specific
code is also either generated or selected from a similar repository. Variability on
this level is concerned with how products differ, i.e. what components different
products use and what product specific code (PSC for short) that is used.

Product Level. On the product level, the components are fitted together to
form a product architecture, and the PSC is customized for the particular pro-
duct variation. Variability issues on this level are a) how to fit components
together, b) how to cope with evolving interfaces, and c¢) how to extract and/or
replace parts of the PSC.

Component Level. As we now have selected the components and connected
them, we are on this level concerned with selecting what particular component
implementations to include into the product. As stated earlier, we view a com-
ponent as an abstract object oriented framework with a number of framework
implementations. This level is where the set of framework implementations are
selected. These framework implementations are also connected to the abstract
framework, and lastly, the PSC is bound into not only the abstract framework,
but also into the concrete implementations. Variability issues here are how to
enable addition and usage of several component implementations, and how to
design the component interface in such a way that it survives the addition of
more concrete implementations. This is slightly different than the evolving in-
terface issue on the product level, since there the concern was how to cope with
the interfaces from the outside of the component. On this level, the concern is
how to cope with the evolving interfaces from the perspective of the various
component implementations.

Sub-component Level. We previously observed that functionality spans a
number of components, and depending on the configuration of one component,
other components are affected as well. To avoid dead code, the parts of com-
emoved. Note that removing a particu-
he component implementations, since

Issues Concerning Variability in Software Product Lines 153

they all implement the feature. The variability issue on this level is thus how
to remove or add parts of a component where each part spans all component
implementations.

Code Level. On the code level, everything stated above must be put into
place. If the previous steps have been followed, all that remains to do is to make
sure that the provided class interfaces match the method calls performed, i.e.
the required interface. This is probably the hardest variability challenge of all.
As components and classes evolve, so do their interfaces. These interfaces exist
in more than one component implementation, and are used by more than one
component. Moreover, each product may use a separate version of the component
implementation, and thus a separate version of the interface. All of this must be
put together on this level.

The Variability Mechanisms. Having defined the steps by which a product
is instantiated from a software repository, this section discuss how the variability
mechanisms presented in section 4.2 can be applied to the different steps.

Configuration. In the early stages, configuration plays a significant role. On the
product line level, it is used to select the components and the PSC from a code
repository, albeit this requires that there is a clear separation between generic
and product specific code.

On the product level, the selected components are connected together, for
instance by using tools such as module interconnection languages.

Configuration on the component level is concerned with selecting the ac-
tial concrete implementations to include into the product. Logically, these are
usually seen as part of a single component, but from the view of configuration
management, they are often seen as subsystems.

If the components have been designed as a collection of disjoint sub-compo-
nents, configuration management can be used to select the specific parts of the
components to include on the sub-component level, but otherwise configuration
management plays, at this stage, a less significant role. Configuration manage-
ment is also practically useless on the code level, since it is to coarse-grained.

Ifdefs and Parameterization. Almost hand in hand with configuration manage-
ment goes ifdefs and parameterization. In a way, ifdefs can be seen as a more
fine-grained configuration management tool, and parameterization is only a spe-
cial case of this, were no code is excluded from the compiled binary, as is the case
with ifdefs. A general disadvantage of using ifdefs and parameterization is that
as the number of products increase, this soon becomes unmanageable. Consider,
for example, if the code base is built up using ifdefs to distinguish between pro-
ducts and a new product is introduced. This means having to find and modify all
the ifdef statements throughout the entire code base. Parameterization is used
in_simi i i the unwanted source code remains in

154 M. Svahnberg and J. Bosch

On the product line level, ifdefs is the way to remove unwanted PSC, if it
is not cleanly enough separated to use configuration management tools instead.
On the product level, these two techniques can be used to connect components to
each other, but this allows for only a very static way of connecting components.

On the component level, parameterization can be used to select the com-
ponent implementations to use, but this requires that the abstract component
is aware what particular implementations that exist. Moreover, the compiled
binary will contain dead code , i.e. code that is never executed, depending on
what configuration of component implementations that is selected. Ifdefs have
a number of usages on this level; they can be used to a) insert the PSC into
the component implementations, b) change the component interface depending
on the configuration of the component, and ¢) to select the set of component
implementations to include into the product. The disadvantage of all of these
usages is that they are not scalable. Case (a) and (c) increase in complexity as
the number of products and the number of component implementations, respec-
tively. Case (b) is also depending on the number of component implementations,
but with the additional disadvantage that every component implementation and
all other components that use these component implementations needs to be
drastically modified for every interface change. However, they do need to be
modified anyway, and using ifdefs can ensure that older products can still be
generated from the same code base. Parameterization and ifdefs are used in a
similar fashion on the sub-component level, but the disadvantage is that para-
meterization results in dead code, and the complexity of the code increases, as
stated above. For the same reasons, we discourage usage of these two techniques
for both the sub-component level and the code level.

Inheritance and FEaxtensions. These two techniques plays a substantial part on
all the levels of variability, mainly because they can be used together with both
configuration management, parameterization, and more run-time oriented varia-
tion mechanisms. Inheritance and extensions provide a way to divide the source
code into several files, which makes it possible for the course-grained file-based
configuration management tools to select and deselect individual extensions.
As the importance of configuration management decreases in the later levels
of variability, the more fine-grained technique of parameterization increases in
importance, and inheritance then supports variation on the class level. When
parameterization decreases in usefulness, inheritance and extensions step up as
a major technique in their own right, in the form of Design Patterns.

Templates. Using templates instead of inheritance yields the same benefits, plus
a slight performance increase. The drawbacks of using templates is that the
generic code needs to be parameterized with the class names of the PSC, and
the interface becomes implicit. However, this is sometimes an advantage, since it
makes it possible to hide interface changes. Another limitation becomes evident
on the sub-component level, because more than one extension is allowed to be
present in a system at one given time, and this is not technically possible when
using templates. With templates is that you get a one-to-one mapping between

Issues Concerning Variability in Software Product Lines 155

a using class, e.g. a linked list, and the class used to instantiate the template,
e.g. a word-class.

Generation. Code generation is a technique that, to our knowledge, is not used
very often in industry. Its main usage would be on the product level, where
the code from the software repositories needs to be instrumented with product
specific code, and in particular glue code to connect the components to each
other. On the other levels, it becomes a more philosophical question: should you
create a tool that generates source code, or should you write the source code
directly?

4.4 Analysis of Techniques

By examining the usage of the techniques further, we see that configuration
management plays a substantial part in the higher levels, i.e. the product line,
product, and component level, after which the usage dwindles to practically no-
thing. A similar curve is generated by ifdefs and parameterization, albeit slightly
less usable in the higher levels, and useful slightly longer. As the usage of confi-
guration management and parameterization decreases, the usage of inheritance
and extensions increase, and in parallel with this, so does the use of templates.

Unfortunately, this is often not the case in industry. Instead, variability is in
many cases implemented using parameterization (i.e. templates and ifdefs) for
all levels of variability. Tools designed for code level variability are thus used on
all the levels, which causes many troubles with respect to understanding what
is happening, and how to maintain the product line.

5 Related Work

[Jacobson et al., 1997] is probably the main reference regarding variability today.
The book discuss all the topics connected to software reuse, of which variability
is a major issue. The book focus mostly on how to implement variability into a
newly created product or product line, and does not cover evolutionary aspects
as extensively. Our work is based on the techniques identified to achieve variabi-
lity, and presents an overview of how these can be used in an evolving product
line. Object oriented frameworks has been a recognized way of achieving soft-
ware reuse for quite some time now, and naturally the discussions also concern
variability. For instance [Roberts and Johnson, 1996] present what they call hot
spots , i.e. places where the framework is likely to change for every new release
and usage.

The two major techniques for variability as identified are configuration mana-
gement and design patterns. Configuration management is dealt with extensively
in [Conradi and Westfechtel, 1998], presenting the common configuration mana-
gement tools of today, with their benefits and drawbacks. Design patterns are
i i il i |, where many of the most used design

156 M. Svahnberg and J. Bosch

Academia has come up with a number of techniques that are not used
very much in industry. Some of the more interesting are Aspect-, Feature-, and
Subject-oriented programming. In Aspect-oriented programming, features wea-
ved into the product code [Kiczalez et al., 1997]. These features are in the ma-
gnitude of a few lines of source code. Feature-oriented programming extends
on this concept by weaving together entire classes of additional functionality
[Prehofer, 1997]. Subject-oriented programming [Kaplan et al., 1996] is concer-
ned with merging classes developed in parallel to achieve the combined functio-
nality of both. Although interesting from a technical perspective, neither of them
are used in industry, and they all require more discipline from the programmers.
They all claim to improve readability of the source code by extracting sets of
behaviour from the product code, but we hold doubt whether this technique
helps understandability of the code actually executed.

6 Conclusions

A cost-effective management of variability is one of the key issues for a succes-
sful product line. In contrast to what is usually said (e.g. [Macala et al. 97]), it
is not practical to map out all the planned products that is to be fit into the
product line with a five year span. Although predicting technology changes and
other developments is important, a substantial part of the new requirements
on the software product line cannot be predicted. The consequence of this is
that the product line is not designed for all the future products, but rather for
the products that exist today. To handle variability well is then to handle the
variability required of the software product line today. There are a number of
characteristics that distinguish product line development from traditional soft-
ware development. This paper presents a number of these characteristics, based
on previous industry case studies. These characteristics are useful when selecting
between different techniques to introduce variability into the software product
line. Moreover, we have noticed that variability is introduced on different levels
of the product line, i.e. product line, product, component, sub-component, and
code level. The challenges on these levels differ, and hence so does the most suita-
ble solution. We discuss the commonly used solutions for each level of variability,
presenting the benefits and drawbacks of each solution on each level.

As part of future work, we intend to continue to study variability management
in industrial contexts. based on these results, we intend to develop guidelines and
techniques to improve on the problems discussed in this paper.

References

[Bass et al., 1998] Bass, L., Clements, P., and Kazman, R. (1998). Software Architec-

ture in Practice. Addison-Wesley, New York, NY.
[Conradl and Westfechtel, 1998] Conradi, R. and Westfechtel, B. (1998). Version mo-
i anagement. ACM Computing Survey, 30(2):232 —

Issues Concerning Variability in Software Product Lines 157

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley
Longman, Reading, MA.

[Jacobson et al., 1997] Jacobson, I., Griss, M., and Jonsson, P. (1997). Software Reuse:
Architecture, Process and Organization for Business Success. Addisson Wesley, New
York, NY.

[Kaplan et al., 1996] Kaplan, M., Ossher, H., Harrisson, W., and Kruskal, V. (1996).
Subkecy-oriented design and the watson subject compiler. Position paper for
OOPSLA’96 Subjectivity Workshop.

[Kiczalez et al., 1997] Kiczalez, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming. In Procee-
dings of 11th European Conference on Object-Oriented Programming, pages 220242,
Berlin, Germany. Springer Verlag.

[Macala et al., 1996] Macala, R., Stuckey, L., and Gross, D. (1996). Managing domain-
specific, product-line development. IEEE Software, 13(3):57-67.

[Mattsson and Bosch, 1999] Mattsson, M. and Bosch, J. (1999). Composition pro-
blems, causes, and solutions. In Fayad, M., Schmidt, D., and Johnson, R., editors,
Building Application Frameworks, chapter 20, pages 467-486. John Wiley & Sons
Ltd., New York, NY.

[OSterbye, 1999] Osterbye, K. (1999). Vertical objects in a horizontal architecture:
Design issues in a component based architecture for doculive. In Proceedings of the
Second Nordic Workshop on Software Architecture (NOSA’99).

[Prehofer, 1997] Prehofer, C. (1997). Feature-oriented programming: A fresh look at
objects. In Proceedings of ECOOP’97, number 1241 in Lecture Notes in Computer
Science, Berlin, Germany. Springer Verlag.

[Roberts and Johnson, 1996] Roberts, D. and Johnson, R. (1996). Evolving frame-
works: A pattern language for developing object-oriented frameworks. In Proceedings
of PLoP-3.

[Svahnberg and Bosch, 1999a] Svahnberg, M. and Bosch, J. (1999a). Characterizing
evolution in product line architectures. In Debnath, N. and Lee, R., editors, Procee-
dings of the 3rd annual IASTED International Conference on Software Engineering
and Applications 1999, pages 92-97, Anaheim, CA. IASTED/Acta Press.

[Svahnberg and Bosch, 1999b] Svahnberg, M. and Bosch, J. (1999b). Evolution in
software product lines: Two cases. Journal of Software Maintenance: Research and
Practice, 11(6):391-422.

ol Ll Zyl_i}sl

A First Assessment of Development Processes with
Respect to Product Lines and Component Based
Development

Rodrigo Cer6n'?, Juan C. Dueiias?, and Juan A. de la Puente?

Department of Engineering of Telematic Systems,
Universidad Politécnica de Madrid
ETSI Telecomunicacion, Ciudad Universitaria, s/n, E-28040 Madrid
ceron@dit.upm.es, jcduenas@dit.upm.es, jpuente@dit.upm.es

Abstract: One important line of research in the application of product-
line approaches to the industrial field is the creation and adaptation of
already known development processes to hold the activities required to
build families of products, based on the usage of components. There are
different development models in the literature, but each of them focus
on a specific technique or approach, so in order to create an effective
development process suited for that purpose, several of them must be
joint. This article reviews a well-known development process, and
evaluates it in the light of product lines development and also the
creation and usage of components. This is achieved by comparison with
other four processes, specially tailored to those activities. This is the
starting activity of a larger effort driven towards the definition of a
general development process, able to apply the best practices known to
the creation of product lines with components.

Introduction

The current situation, as regards the development of complex software-systems, is the
usage of architecture-centric approaches, supported by the usage of either in-house
modelling formalisms, domain specific formalisms, such as SDL, or general
description languages, such as UML.

! Prof. Rodrigo Cerén is a visiting professor from Universidad del Cauca, Popaydn, Colombia,
granted by contract OJ087/1999.

2 This work has been partially developed in the project "Engineering Software
Architectures, Processes and Platforms for System-Families" (ESAPS) ITEA
99005/Eureka 2023, and has also been partially funded by Spanish CICYT under the
project "Integrated development for distributed embedded systems".

F. van der Linden (Ed.): TW-SAPE-3, LNCS"1951, pp. 158-167, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A First Assessment of Development Processes 159

Once the modelling language problem has been solved, the focus turns to the
process: how to apply the formalisms adequately in order to produce product-lines,
what is the extent of the models, when to produce them and when to finish polishing,
etcetera. The development process must be defined taking into account not only
technical requirements such as integration and tool support, but also management
ones, such as flexibility, repeatability, economy and "time to market".

Some key issues that companies developing software-intensive systems are
pursuing are the techniques around the production of families of applications, and the
usage of components in order to reduce make the development faster.

Current situation in the industry as regards product lines leads to the production of
different systems in the family following an incremental approach, where a new
product reflects the reuse of a previous one, as well as improvements to its
functionality or performance. This approach allows the quick production of new
applications, but provides a low support degree for previous versions. Variants
convert into versions.

With respect to the usage of components, it is important to note that this strategy
has been traditionally regarded as an "implementation activity". Since there was little
or no support for reuse at analysis or design phases, because there was no design
entities for components, the community developing components and groups
promoting reuse at early phases of development had no communication between
them.

The ESAPS project (EUREKA 2023, ITEA 9905) is trying to joint the best of both
worlds by using components at the architectural level, in order to support the effective
development process. This article reviews a well documented development processes
in the second section, and compares it to three development process specially suited
for product lines in third (PRAISE) and fifth section (RSEB and FORM), a
component-based engineering in the fourth section (SELECT). Our attempt in the
ESAPS project will be to populate this evaluation and to get a catalogue of activities
that can be combined to get a general development process.

The Rational Unified Process Model

The Rational Unified process [2], [3] has been proposed by the Rational corporation,
as a general model that holds "best practices” in the development of complex systems
(not only software). The main forces behind its application are:

1. architecture-centric development: the efforts are guided and documented by the
architectural models of the system, that act as a roadmap for all stakeholders. The
architecture is used to understand the system, organise the development, foster
reuse and evolve the system.

2. iteration: following the main stream in development processes, that regard the pure
waterfall model as obsolete, the process is organises as a series of iterations
holding nearly all kinds of activities (in more or less degree), that improve the
system until the degree of coverage of requirements is adequate. Thus, a software
product is developed in small and manageable steps.

3. use-case driven: the start of each iteration is the definition or focus on new use-
cases. (based on functional requirements) of the system. Gradually, the system gets
more and more functions, added following these use-cases.

160 R. Cerédn, J.C. Dueiias, and J.A. de la Puente

Following these main ideas for this kind of approach, the unified process repeats over
a series of cycles, where each one concludes with a release of the product. And each
cycle consists of four phases: inception, elaboration, construction and transition. Each
phase terminates in a milestone and it is further subdivided into iterations (waterfall
mini-projects).

The inception phase transform a good idea into a vision of the end product, the
elaboration phase design the architecture, the construction phase build the product and
the transition phase deliver the version of the product to their users. The product
evolves through these phases until it is considered obsolete.

Workflow

The core workflows (Requirements, Analysis, Design, Implementation and Test) and
its activities and related workers (roles) are shown in figure 1. Each phase is
composed by the core workflows. The time advances from left to right and the arrows
between the activities represent temporal relationships.

System (Find Actors ggructure the
Analyst and Use-Case Model
Use Cases

Test Test

plan =————— design

1
Use-Case etails e
grate:
Specifier system tegrator
User-Interfa Ul Imetgﬁ;ﬁ“ﬂ Integratiol
Designer prototype < tester
—

1
Architect W hi 1 <A i Archi 1 System | System
analysis design implementation test
tester
/ ¥ 1
Use Case Use case Use case
Engineer analysis design

Component Class Class s S ot
Engineer omED o wgn‘Subsystem Subsy?tem B
* a::l;s%: design plementation sl testing
Analysis Implementation
Fig. 1. Workflows in the Rational Unified process
Roles

The process proposes the usage of several main roles that can be specialised later. The
basic roles are: System Analyst, Use-Case Specifier, User-Interface Designer,
Architect, Use Case Engineer, Component Engineer, Test Engineer, System
Integrator, Integration Tester and System Tester. One person can play one or various
roles according to the workflow. The activities assigned for each role can be extracted
from figure 2.

Requirements

Analysis

A First Assessment of Development Processes

Analysis
model

Use case
model .

Design

Implementation

Design Deployment
model model

Implement.
model

Test
model

Test

Fig. 2. workflows vs. models in Rational Unified process.

Products

161

In the Unified Process, we can distinguish six models (Use-Case Model, Analysis
Model, Design Model, Deployment Model, Implementation Model and Test Model).
All the models but the Test Model uses UML. The relation of core workflows and
models is shown in figure 1.

The relationship between phases and deliverables is shown in table 1.

Table 1: workflows vs. deliverables in Rational Unified process.

Inception

Elaboration

Construction

Transition

Feature list

First version of
Business Model

First cut
Models

First draft of
candidates
architectures
description.

Possibly
exploratory
prototype

An initial risk
list

The
beginnings of a
plan for the entire
project

A first draft of
the business case

Preferably a
complete business
model

A new version of
all models

An executable
architectural baseline

An architectural
description

Updated risk list

Project plan for
the construction and
transition phase

A preliminary
user’s manual

Completed
business case

Project plan for
the transition phase

The executable
software itself

All tangible
pieces of information

An updated
architecture
description

Preliminary user’s
manual

Business case

The executable
software itself
including installation
software

Legal documents

Completed and
corrected product
release baseline (all
models)

Completed and
updated architecture
description

Final manuals

Customer support
references and web
references

Being a general development process, that must be adapted to a specific company
and application domain, no activities have been found in order to produce a product
line. The usage of components is partially covered in the workflow by the activities
performed by the "Architect” and " Component Engineer " role. We will discuss these
two kinds of activities, comparing the process to other specific processes.

ol Ll Zyl_i}sl

162 R. Cerédn, J.C. Dueiias, and J.A. de la Puente

Product Lines Development Activities

Product engineering Feedback/adaptations/reverse engineering

Domain

Legacy code analysis Domain .
Domain knowledge design sy
implementation
Domain terminology Reference

Reusable

Ref. requirements
ef. requirements components

architecture

New requirements Application

requirements g Application A
design =) Application

Application engineering coding

Fig. 3. the PRAISE development process model.

In order to evaluate the Unified Rational process with respect to product line
activities, the PRAISE development process model is a help. This development
process has been specifically created in order to define the activities and products that
building product lines must include. This process model was created by the European
project PRAISE, as an attempt to study the process of creation of product lines and
derivation of single products in the family.

One way to assess the Unified Rational process is then to compare its workflow
with PRAISE’s, matching activities common to both of them. Unfortunately, the
PRAISE model is still at the abstract level (it is a kind of meta-process), so there are
no specific details about how to perform each of the activities. So, more than a
comparison activity by activity, PRAISE can serve as a pattern in order to check
product-lines development process conformance.

An important issue of PRAISE is that it has been defined following the waterfall
schema (although some degree of iteration is supported by the arrow that includes
feedback, adaptations, reverse engineering). For both the workflow and the tasks, see
Figure 3.

The results of our comparison of the Unified Rational process with respect to the
PRAISE process model are:

e the Unified Rational process does not support generic activities (product-lines)
explicitly; there are no activities in order to derive products from reference
architectures. In PRAISE, this is described with two main flows of work: the
product engineering for families of products, and the application engineering for a
single product.

e the Unified Rational process seems to be a "from-the-scratch" approach to the
development of a single product; so no inputs appear, taking into account the

A First Assessment of Development Processes 163

o the difference between single product and set of related products does not appear in
the process description. Activities such as delivery of different products, definition
of policy for replacements and some more should be added.

e in any case, the Unified Rational process seems to support better the application
engineering flow, based on the usage of components (that could have been
produced in the product engineering flow). The notion of component appears, and
so the roles such as "architect" and "component engineer".

The iterative approach of the Unified Rational process, in any case, could hold the

development of product lines, provided that the core functions or elements in the

family can be packaged into a single product. Next iterations lead to the production of
new applications. This approach also leads to the harvesting of the set of components
that can be used in subsequent iterations (the "domain implementation" task in the

PRAISE model). In any case, new roles must be added to the Unified Rational

process, at least for domain analysis and domain design. An architect of applications

may be do the domain analysis and domain design, for example.

Component-Based Development Activities

In order to assess the Unified Rational process, and following the same approach than
with product lines, a specific development process based on components, has been
chosen and studied. The SELECT development process [4] is now described. The
process is iterative and product focused, and it is divided in two sub-projects: the
"solution project" and the "component project". The first project aim to produce
solutions by assembly of components and the second one aim to sow reusable services
in the manner of component builders.

The high level workflow is shown in Figure 4 where BPM stands for Business
Process Model. BPM can be considering an optional and highly recommended
process, it is done prior to component and solution projects, and then the solution and
component process are performed.

The basic solution team roles are Project Manager, Technical Co-ordinator,
Executive Sponsor, Visionary, Developer/Senior Developer, Ambassador User,
Adviser User, and Team Leader. Additional staff may perform the roles of Reuse
Identifier, Testing Specialist, Human Factor Specialist, and Business Consultant. The
basic component team roles are Reuse Manager, Reuse Librarian, Reuse, Assessor,
Reuse Architect, and Component Developer. The component team can also make a
call on solution and the additional team roles. The solution and component teams
must be supported by Technical Infrastructure Team. The Technical Infrastructure
Team roles are Technical Facilitator, Network Expert, Web Expert, and Capacity and
Performance Manager. For each role, there is a general description in [4].

In the SELECT Process, we can distinguish eight models (Business Process Model,
Use-Case Model, Class Model, Object Interaction Model, State Model, Component
Model, Deployment Model, and Logical Data Model). All the models but the
Business Process Model and Logical Data Model use UML. The Business Process
Model use a notation adapted from CSC Catalyst. The Logical Data Model is optional
and use a notation adapted and simplified from CCTA [5], this model is employed
only-in-the.case in-which-relational.databases are used for data storage.

164 R. Cerédn, J.C. Dueiias, and J.A. de la Puente

Compared to the Unified Rational process, there is a great difference in focus. In
the Rational process, iteration applies to a central architecture, whereas in the
SELECT approach, iteration aim to harvest the set of generic and reusable
components.

Business » /Optional
Diregtion

Architectural
Scoping

Assessment

Upgrade Path
Y

$ Design
and Build

Generic
Business
Requirements

Specific
Business
Requiremenfs

BPM
Process

User Services Business and
Data Services

Fig. 4. the SELECT development processes.

In order to adapt the Unified Rational process more closely to the management of
reusable components:

e the main improvement that SELECT can add to the Unified Rational process is the
sowing process for the development of a component. When there are activities
performed by the architect, an additional possibility appears: to browse and select
previously developed components. In this way, the ideal case of development of a
product just by "gluing" components is also supported; this is not clear with
Unified Rational Process but it is possible to do.

e a new entry point should be added to the workflow, in order to implement the
harvesting process, not driven by one use-case, but from generalisation from
previous developed systems.

e explicit activities in the "architect” track must be added, specially for the
identification and acquisition of components.

e activities in the "component engineer" track must be added, specially for the
generation of reusable components.

The main strength with this approach is the concentration of the decision in two
roles "architect" and "component engineer" but it may produce a non-repeatable
process.

Reuse-Driven Software Engineering Business (RSEB) and Feature-
Oriented Reuse Method with Domain-Specific Reference
Architectures (FORM)

RSEB [7] and FORM [8] are suited for product lines because they define a systematic
method that focuses on capturing commonalities and differences of applications in a
domain and using analysis results to develop domain architectures and components.

In order to obtain a software engineering the RSEB process is divided into three
categories: Component System Engineering, Application System Engineering, and
Application Family Engineering. Application Family Engineering process determines
how to decompose the overall set of applications into a suite of application systems

A First Assessment of Development Processes 165

and supporting component system. Application System Engineering process selects,

specializes, and assembles components from one or more component systems into

complete application systems. Component System Engineering process designs,
constructs, and packages components into component systems. It defines a series of
roles (workers): Software Engineering Bussines Manager, Process Owner, Process

Leader, Use Case Engineer (Superordinate Use Case Engineer), GUI Coordinator,

Subsystem Engineer (Superodinate Subsystem Engineer), Use Case Designer

(Superordinate Use Case Designer), Tester, Reuse Process Engineer, Reuse Support

Enviroment Engineer, Facade Engineer, Architect (Lead Architect), Distribution

Engineer, Component System Trainer, Component System Supporter, Component

System Librarian, and Application Engineer [7].

The FORM method consists of two major engineering processes: domain
engineering and application engineering (see Figure 5). The domain engineering
process consists of activities for analyzing systems inside a domain and create
reference architectures and reusable components based on the analysis results. The
reference architectures and reusable components are expected to accommodate the
differences as well as the commonalties of the systems in the domain. The application
engineering process consists of activities for developing applications using the
artifacts created in the domain engineering.

The results of our comparison of the Unified Rational process with respect to the
RSEB and FORM process model are:

e both RSEB and FORM consider the development of a family of applications.

e the Unified Rational process does not take into account activities related with the
study of commonalties of applications.

e the Unified Rational process considers the architecture as the central point in the
development process but it seems to be derived for a single application because it
does not consider activities such as domain analysis in FORM.

e the Unified Rational process can be adapted in order to support product lines
adding roles (like the RSEB proposes) and activities in the core workflows (like
the FORM proposes).

Conclusions and Further Work

The main conclusions that can be got about product line and component based
development activities is that lacking of practical experience is the main problem to
their widespread acceptance.

Some additional points where these approaches can improve are the provision of
either conceptual and physical tools that support:

e the description of variant and common parts in the reference architecture, using
UML. Some efforts have been reported [6], but we are still far from a clear design
representation of common/variant parts, that does not interfere with the
understanding of other design principles.

e the presence of components provided by different companies at the architectural
level. Some attempts are the description of DCOM components, for example, by
means of interfaces. However, a better working documentation, given as contracts
of operations, should be provided.

166 R. Cerén, J.C. Duenas, and J.A. de la Puente

method guides to incorporate to the current in-house development processes, the
harvesting activities in order to create components that the same company is able
to reuse later. Especially, smooth paths for implementing product-line and
component based activities within these processes.

changes to the organisation, sometimes regarded as '"business process
reengineering" are still necessary to create a flexible organisation able to respond
quickly to the market requirements.

FORM Domain Engineering

. Reference Reusable
Domain Architecture| Component
Analysis Development Development|
User Application Application
Req 1 Architecture Software
Analysis Selection Development
Application Architecture
. . . .
_ FORM Application Engineering
Legend
E— Model Reuse e | = Feedback for Updating the Domain Model

Fig. 5. FORM Engineering Processes.

Our future work in the project will be to produce the catalogue of common activities
and the guides to adopt them in already running development processes, and the study

of

principles and guides to represent variability with UML, and to identify abstract

components in a given architectural model.

Bibliography

[1] M. Shaw, D. Garlan, Software Architecture. Perspectives on an Emerging
Discipline, Prentice Hall 1996.

[2] 1. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development
Process, Addison Wesley 1999.

[3] P. Kruchten, A Rational Development Process, Rational WWW site.

http://www.rational.com/sitewide/support/whitepapers/dynamic.jtmpl?doc_key=
334.

[4]

(5]
(6]

(7]

(8]

A First Assessment of Development Processes 167

P. Allen, S. Frost, Component-Based Development for Enterprise Systems:
Applying The SELECT perspective, Cambridge University Press 1998.

CCTA, SSAMD Version 4 + reference Manual, NCC Blackwell 1995.

B. Keepence, M. Mannion. Using Patterns to Model Variability in Product
Families , IEEE Software, 16/4, July 1999. IEEE Computer Society.

I. Jacobson, M. Griss, P. Jonsson. Software Reuse: Architecture, Process and
Organization for Business Success, Addison Wesley 1997.

K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh. FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures, 1998

ol L ZJI_E.LI

Evolution of Software Product Families

Jan Bosch' and Alexander Ran’

'Department of Software Engineering and Computer Science
University of Karlskrona/Ronneby
Sweden
*Nokia Research Center
5 Wayside rd., Burlington, Ma 01803
USA

Jan.Bosch@ipd.hk-r.se

alexander.ran@nokia.com

Abstract. Evolution in software product families is a difficult problem that is
not well understood and studied insufficiently. In this article, we present a
categorization of product family evolution, a discussion of the implications of
architectural evolution and a summary of the discussion during the workshop.

Introduction

The session on evolution of architecture of software product families was one of the
two special sessions of the workshop. The Workshop Program Committee introduced
it into the program even though no papers were submitted to the workshop that would
comfortably fit this topic. We all recognized the importance of change and evolution
in design, development, and management of software product families, and we
regarded IWSAPF-3 workshop as an opportunity to make progress in our joint
understanding of the subject.

We got an assignment to prepare a position on the subject of evolution of software
product families. We have presented our position as an introduction to a common
discussion. In this paper we overview the main ideas of our introduction to the topic
of evolution in software product families and mention some interesting points and
ideas that were raised during the discussion.

Understanding Evolution and Change in Software Families

The products in a software product family are used by customers. The use of the
software product generally leads to new requirements. These new requirements
emerge reactively, because the users require additional features, or proactively, since
the marketing responsible for the product identifies new features that allow for new
uses of the product or that will result in increased market share. This process occurs in
parallel for all products in a product family. New requirements do no just originate
from the customers, but may also result from evolution of the technology used by the
software product, e.g. hardware and third-party components and new standards.

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 168-183, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Evolution of Software Product Families 169

Whenever new requirements emerge, the first decision that has to be taken is
whether these requirements should be incorporated or that the software product
should not develop into the niche indicated by the new requirements. Once it is
decided that we should incorporate the requirements, the second decision that needs to
be taken is whether the requirements have, or should have, effect on the product
family as a whole, or that the effects can be restricted to the particular product at
hand.

If the requirements are only relevant for the product at hand, incorporating the
requirements is performed as part of the product-specific code and is similar to the
ways of working in the traditional, one-system-at-a-time model. However, if we
decide that these new requirements need to be incorporated in the product line assets,
several product line assets may be affected. Changes to a shared asset will affect all
products that incorporate the asset and new requirements need to be integrated
carefully. One risk is that the extensions to, e.g., a software component are frequently
too product-specific and are not sufficiently generalized. In figure 1, the evolution
process, fuelled by the need to incorporate new requirements, is visualized.

We have identified a number of categories of requirement evolution. Below, we
present an introduction to these categories and briefly discuss the effect changes in
each category can have on the product family architecture and the product family
components. In [2], the categories are discussed in more detail and

exemplified.
specify
\
2 1
pr_oduct part of proQuct-Ilne
requirements scoping requirements
‘ |
v v
— product derived product-line
Ll architecture architecture
stakeholder
\
v 1 v
product i”s‘a’;ia‘ed product-line
components configured components
A
\
v 1
product

use

Fig. 1. Evolution in software product families

Ol Ll Zyl_i.lbl

170 J. Bosch and A. Ran

New Product Family

The first form of evolution that we discuss in this chapter is also the most extensive

one, i.e. the introduction of a new product family based on an existing product family.

This situation can occur due to a number of different circumstances. Below, we

present a number of possible causes for initiating a new product family.

e Too large variability: A company may see an opportunity to release a set of
software products on a new market or market segment based on its existing product
family. However, the set of new products is different in at least one major aspect of
the product behavior. For instance, different hardware, operating system or user
interface mechanisms.

¢ Business reasons: Especially when products in the product family are incorporated
into larger systems by the customers of the organization managing the software
product family, business opportunities may occur that require the organization to
initiate a new product family based on the existing one.

¢ Incorporating independent products: Either through merging with or acquisition
of other companies in the same market segment or by extending the scope of the
software product family, it may become necessary to incorporate independent
products into the product family. Since the products that are to be incorporated
generally do not share the same architecture and components, converting these
products at once may be very costly and not economically viable. In addition, these
products may exhibit relevant features that currently are not included in the product
family.

¢ Geographical distance: A fourth possible reason for instantiating a new software
product family is the geographical distance between the units maintaining the
product family and the units maintaining a subset of the products in the product
family. Due to the geographical distance, and associated communication problems
resulting from, among others, different time zones, etc., it may be too complicated
to maintain a highly integrated product family. A solution to this approach may
then be to create a new product family within the existing product family.

e Cultural conflicts: In some cases, the introduction of a software product family
causes substantial cultural conflicts to surface between the various organizational
units that were affected by the new product family. However, even when a product
family is well established, problems of non-technical nature may appear that
require management to reconsider the product family approach. Often, due to
reorganizations the organizational units working with product family assets may
obtain increasing levels of independence and, on occasion, the product family may
restrict the agility of the individual units. In those cases, tension between that unit
and the others will surface and forces to increase independence by leaving the
product family and maintain product-specific versions of all but a few components.

The above reasons may require the introduction of a new software product family.

One can identify two approaches that can be used to establish the new product family,

i.e. cloning or specialization. Below, these approaches are discussed in more detail.

e Cloning: In cases where local control and agility are the primary goals, the
preferable approach is to clone the existing product family, i.e. literally create an
additional copy of all assets that are part of the product family. The organizational
unit or units that demanded their own product family become responsible for the
new copy of the product family. Generally, the first step is a pruning activity in

Evolution of Software Product Families 171

which all components and architectural elements in the product family that are not
necessary for the products supported by the involved unit or units are excluded
from the new product family. Subsequently, often a redesign of the product family
architecture and an evolution of the software components to remove irrelevant
requirements and to incorporate the new requirements is required.

Specialization: The second, less revolutionary, approach is to specialize the
product family. Specialization, in this context, results in the creation of a new
product family within the existing software product family. Analogous to object-
oriented programming, the inheriting product family obtains all features and assets
in the parent product family, but is able to override the existing features and assets
and may extend the inherited features and assets with new functionality. If one
understands that the products in the product family already exhibit a specialization
relation with the product family, it is clear that a specialized product family
typically is inserted in between the existing product family and a subset of the
existing or new products. The specialization approach to creating new product
families is a highly viable way of working that maintains many of the advantages
of a product family approach.

Introduction of New Product

The second type of evolution, less demanding fortunately, is the introduction of a new
product in the product family. The addition of a product to the product family can
originate from a number of different causes. Below, some of those causes are
discussed in more detail.

Market opportunity: The first, and most frequent, reason for adding a new
product to the product family is the identification of a market opportunity. The
organization has identified that a certain segment in the market is not serviced by
the existing product family and that there is a business case for entering the
segment.

Incorporate independent product: A second scenario that leads to the extension
of the product family with a product is when an independent product needs to be
incorporated. One cause for adding a product is when the original decision with
respect to scoping is changed by management. Management decides that a certain
product should be incorporated in the product family, even if the initial decision
was against incorporating the product. A second cause may be the acquisition of a
company that develops a product that falls within the scope of the product family.
Extend product family scope: Finally, a typical scheme to adding new products to
the product family is by extending the product family with products that are at the
high-end and at the low-end of the products currently supported by the product
family. The process often starts with the identification that the product family is
able to support an additional product family member, if only a particular feature or
feature set is added to the product family.

Especially this last type of adding products to the product family is frequently
complicated by conflicting quality attributes. The current product family is optimized
for a particular set of quality attributes that is the result of a compromise. Since the
compromise often is optimal for the products in the middle of the product family,
adding products at the extremes, be it high-end or low-end, often requires that the

172 J. Bosch and A. Ran

software architects and engineers explicitly address the conflicts between the quality

attributes in the product family and the quality requirements of the new product.

To incorporate a new product, a number of steps have to be performed. Below,
these steps are discussed in more detail:

o Identify commonalities: The first step must be to identify the commonalities
between the product and product family. Since the decision has been taken to
integrate the product in the product family, there must be considerable overlap
between the two entities. Thus, using the feature set defined during the design of
the product family architecture, one can check for each feature whether the product
implements or requires that feature as well. In the case where the feature is
currently not incorporated in the product, it should be considered whether
including the feature will have any negative effects for the product. If incorporating
a feature in the product does not have any negative effects, but would require less
variability from the components implemented in the product family, it may be
beneficial to incorporate the feature.

e Match product and product family architectures: Once the functionality
required by the product has been identified, the software architecture for the
product can be matched with the product family architecture. Especially when
integrating an existing product, a compatible software architecture will simplify the
integration process. In fact, if the software architectures are very dissimilar, it may
be impossible to integrate the product. If the architectures are structurally similar,
replacing product-specific components with product family components can
generally be performed at a relatively small effort.

e Develop variation points for product family components: In general, an
independent product that is incorporated in the product family will have variability
and functionality requirements on the product family components that are currently
not supported. The components need to be extended with support for the new
product as well. This can be achieved by extending the product with additional
variation points, that allow for the appropriate configuration of the component. If
the product-specific requirements can be achieved using this approach, that is
preferable. Otherwise, other approaches are required, as discussed below.

¢ Develop/reengineer product-specific code: Where the product family assets do

not facilitate the product requirements, it is necessary to implement product-
specific code. This can be implemented by developing product specific extensions
to product family components that support this, e.g. object-oriented frameworks.
Alternatively, product-specific components should be developed that support the
missing requirements.
In the case of an existing product being integrated in the product family, the
functionality not provided by the product family is present in the code of the
product. Assuming up to date documentation is available, the relevant parts of code
need to be separated from the remaining product code. Otherwise, the existing code
may need to be reverse engineered in order to document its structure.
Subsequently, the parts have to be integrated into a software component and the
provided, required and configuration interfaces should be specified. Finally, the
component should be verified against the requirements.

o Instantiate the product: As last step, the product should be instantiated based on
the product family assets and verified against the requirement specification for the
product.

Evolution of Software Product Families 173

Adding New Features

The third type of product family evolution, again less dramatic than the previous type
of evolution, is the inclusion of new features in the product family assets. Typically,
there exists an upward pressure in a product family in terms of the functionality in
that features often are implemented first as product-specific code for a single product,
then it is generalized for the most specialized product family in the hierarchy. This
upward movement continues until the feature has reached the top-level product
family.

Adding new features is, in our experience, the absolutely most common type of
extension to the product family. The new features can originate from a wide variety of
sources. Below, some typical types of evolution are discussed:

e Market investigations: Either passively or proactively through active research by
the marketing department, demands for new features available for the existing
products generally appear constantly. These new features cover a wide spectrum.
However, these features have in common that they originate from the perspective
of the customer, i.e. the features satisfy an existing market, rather than creating a
new one.

e New technological opportunities: With the advancement of technology, new
possibilities arise for products that were not available earlier. These possibilities
should be exploited, but since there generally is not yet a market available for these
new features, effort must be put on creating the market as well as developing
products that exploit the new features.

e Competitors: Finally, a company can take the strategic decision to support a new
feature throughout its product family because its competitors provide, or are
expected to provide the particular feature. These features may neither be requested
by its customers nor the result of technological progress, but may be necessary for
maintaining or expanding market share.

The incorporation of new features in the product family is similar to traditional

maintenance activities. However, one difference is that new features may not be

relevant for all products in the product family, but only for a subset of the products.

How such features should be incorporated is an issue that needs to be addressed

explicitly by the architects and engineers working with the software product family.

One of the potential problems is that extensions required to incorporate the new

features may have negative effects on the products for which incorporating the new

features is not relevant.

In each situation where new features are positive for one subset in the product
family, but negative for the remaining products, the possibility of creating a
hierarchical product family should be considered. That allows for incorporating the
conflicting features in the products that need them while avoiding the negative effects
for the remaining products. However, this is only feasible for features that are
relatively modular in nature. For instance, quality requirements that have product
family-wide effects cannot be incorporated in this way without cloning the product
family. The negative effects of the latter often outweigh other concerns and should be
avoided where possible.

174 J. Bosch and A. Ran

Extend Standards Support

In the first version of a software product, standards are often not implemented
completely, but only the part that is required for the correct operation of the product
in normal modes. In addition, standards, although the name indicates stability, also
evolve through the frequent release of new versions. This leads to the fourth type of
product family evolution, i.e. the extension of standard support by the products in the
product family. In our cooperation with companies, we have identified a number of
types of standards that typically are implemented in an evolutionary fashion. Below,
we discuss three types of standards in more detail.

e Network communication protocols: These types of protocols are a typical
example of standards that are extensive, evolve constantly and where the 80/20
rule applies, i.e. 80% of the functionality defined in the protocol can be achieved
by implementing 20% the standard.

e Component communication standards: Component communication protocols
such as Microsoft’s COM, Sun Microsystems’ JavaBeans and, especially, OMG’s
Corba specify challenging amounts of details about the correct operation within
their respective standard. However, for being able to operate as a component using
the standard, in most cases only a limited subset of the standard is required. This
allows for partial implementation in the first releases and the gradual extension of
the support for the component communication standard(s).

e File systems: Even file systems, especially networked file systems, exhibit the
property where only the core part of the functionality needs to be implemented for
the product to be useable in a file system context. For instance, in a networked file
system, it is possible to not support references to other nodes. In that case, product
can only be used as a leaf in the network, but for many types of products that may,
at least initially, be satisfactory. For more advanced features, the file system
implementation will provide interfaces that either return error codes or other types
of dummy replies.

Incorporating additional aspects of a standard is similar to the incorporation of new
features, which was discussed in the previous section. We refer to the earlier sections
for discussions on how to incorporate the new functionality. One difference is that
standard support generally is less product specific than features, although product
families exist in which the products distinguish themselves based on the supported
standards. In addition, standards are generally well modularized and do not cause
product-wide effects because of quality requirements. Consequently, there will be less
tension between the products in the product family when incorporating extended
standard support.

New Version of Infrastructure

The types of evolution that we have discussed up to now are primarily concerned with
the incorporation of new functionality in the product family. The type of evolution
discussed in this section is concerned with the opposite. In a number of cases, we
have identified the situation where a new version of the infrastructure, e.g. hardware
and operating systems, underlying the products in the product family implements
functionality or behavior that, up to that point, was implemented as part of the product

Evolution of Software Product Families 175

family. In certain cases, it may be possible to ignore this fact and to continue to use
the functionality as provided in the product family assets. However, the disadvantage
is that those maintaining the product family assets remain responsible for the
evolution of this functionality. In addition, the implementation provided in the
infrastructure is often complete and up to date, whereas this is not necessarily the case
for the implementation that is part of the product family.

Therefore, assuming the new version of the infrastructure incorporates relevant
functionality, it is, in most cases and especially in the long term, preferable to make
use of the functionality provided by the infrastructure and to remove the now
redundant functionality from the product family. However, the disadvantage is that a,
potentially substantial, amount of effort is required to incorporate the changes.
Different from the earlier types of evolution where functionality was added to the
product family, the focus of the maintenance work is in this case not in the component
providing the functionality since this component is simply removed from the product
family asset base. Rather, all the clients of the component need to be changed in order
to invoke the infrastructure interfaces rather than the original component.

Changes that affect all clients of a particular component illustrate the importance of
separating the binding of required interfaces from the component specifying the
interface. If the product family architects have achieved a complete separation, then,
in the simplest case, the only required change is to ‘rewire’ the required interfaces of
the client components. However, in practice the interface provided by the
infrastructure is not identical with the interface provided by the original component.
In that case, either a proxy component can be introduced that converts the calls to
match the infrastructure interface or all clients need to be changed in order to invoke
the infrastructure appropriately.

The most complicated case is where the functionality provided by the new version
of the infrastructure is not equivalent with a single component in the product, but is
only part of a component or, even worse, is distributed over multiple components. In
that case, the effort required to incorporate the additional infrastructure functionality
is often substantial and most organizations will choose to proceed in an evolutionary
manner, i.e. incorporating the functionality over the course of a number of iterations.

Finally, we discuss three categories of infrastructure that may improve and affect
the product family:

e Hardware: Among others due to Moore’s law, one can recognize a constant
evolution of the functionality provided by hardware devices, such as
microprocessors, communication devices and application-specific devices such as
ASICS. In product families that do not depend on an operating system, but
implement concurrency, new features for context switching provided in the
microprocessor hardware will affect the handling of concurrency in the product
family. In addition, in communication-oriented processors, the lower levels of
communication protocols may be implemented in hardware, freeing the product
family functionality from that task.

¢ Operating system: Operating systems such as Microsoft Windows and the various
Unix variants, such as Linux, are evolving to become more and more component-
based systems, i.e. the various parts in the operating system, such as memory
management, thread and process management, device management, etc. are
implemented as components rather than a single monolithic entity. The set of
components that is considered torbe part of the operating system is constantly

176 J. Bosch and A. Ran

increasing. This development has effects on virtually all product families that run
on a commercial operating system.

e Third-party component: Our third example may not indicate infrastructure in the
traditional sense of the word, but many product families incorporate a number of
external components that provide important functionality for the product family
members. An example is a web-server component that allows software products to
be accessed through a web browser. Several freeware and commercial web-server
components are available that can be incorporated in the product family. However,
these web server components are constantly improving the supported functionality
and easily touch on functionality that traditionally, for instance, was considered to
be database management (DBMS) functionality, such as support for various types
of querying mechanisms.

It should be noted that all elements in the context of the software product family, be it
hardware, operating systems or third-party components, may change in undesirable
ways that may strongly affect the products in the product family. Although the use of
externally developed elements is generally preferable from an cost/benefit
perspective, one should be aware of the increased risk level due to reduced scope of
control.

Improvement of Quality Attribute

The final type of evolution that we discuss here is not concerned with the
functionality provided by the product family, but rather with the quality attributes of
the product family members and of the assets in the product family. Typical examples
are the demand for improved run-time quality attributes, such as performance and
reliability, and design-time quality attributes, such as flexibility and variability. A
typical scenario is that the developing organization is eager to minimize the time-to-
market (or delivery) for the first version of the product and in the process, attributes
such as the aforementioned are sacrificed. During later versions, these attributes need
to be improved in order to satisfy the users of the product, that generally complain
about the, less than satisfactory, product properties.

Quality requirements frequently have product-wide effects on the structure of the
product. Consequently, in order to improve the quality attributes, changes with
architectural impact may be necessary. However, at this point we have reached the
stage where changes to the product family architecture will have effects on the
software components and products that are part of the product family, i.e. architecture
transformations are immensely more expensive than during the initial design of the
software architecture for the product family.

However, although many cases exist where architectural changes cannot be
avoided, there are several techniques available that are more local in their nature and
that may improve the relevant quality attributes at least with a reasonable amount
against a fraction of the cost of architecture redesign. Below, we discuss some
examples of such techniques:

e Cache: One technique that has been used in a variety of situations is caching. By
storing information in a redundant but quickly accessible form, the average delay
when accessing information can be drastically decreased. Caches are typically used
invmicroprocessorsvandrasypartrofidisendrivers, but also web servers and a large

Evolution of Software Product Families 177

variety of other applications have improved performance using a cache. The main
disadvantage of using a cache is that it requires additional resources, generally
memory, to improve the utilization of another resource, generally I/0 bandwidth or
CPU cycles. A second disadvantage is that, depending of the situation, e.g. read-
only or read-write access to the information, the redundant representation can lead
to inconsistencies. To avoid this, it is generally required that all access to the
information is performed via the cache.

e Memory management: A number of authors, e.g. [2], have indicated that
especially in concurrent object-oriented applications running on parallel hardware,
considerable amounts of the total computation (up to half) is spent on memory
management, i.e. the allocation and deallocation of objects. The introduction of an
object pool where objects are returned after use and can be retrieved when needed
has shown to increase performance drastically in those type of applications. In
general, investigating the fundamental cause of performance bottlenecks and
replacing some general-purpose functionality in the infrastructure with an
application-specific solution can have enormous improvements in performance as a
result.

e Indirect calls: One approach to increasing, especially run-time, flexibility is to
insert a level of indirection in the communication between the components in the
product. By inserting such indirection, invocations can dynamically be redirected,
which improves the possibilities for dynamic replacement of components,
synchronization of behavior and the insertion of additional behavior where
necessary. The disadvantage of this approach is, obviously, run-time overhead and
additional initialization code.

e Wrapper: The incorporation of a quality attribute may require several components
to change their behavior, which is an expensive operation to perform. In those
cases where the functionality can be added before or after an operation in the
component is performed, e.g. encryption and decryption, the concept of a wrapper
can be a useful mechanism to achieve this. Especially when multiple components
need to be extended with identical behavior, a wrapper is effective from a
development perspective, since one instance of the wrapper can be created for each
component. The primary disadvantage of using wrappers is that there often is a
measurable associated performance penalty. For instance, [1] identifies that
wrapping may lead to large amounts of glue code and serious performance
degradation.

Change and Evolution of Software Family Architecture

It has become a cliché that change is the only permanent factor of software
development. We also commonly regard it as a necessary evil.

But should change in the architecture be taken in the same way or should we
regard it in a different manner? Does change in the architecture always mean we
overlooked something? Does change in the architecture in the late implementation
phase always mean bad news? Is any kind of change and variation in the architecture
of software family acceptable? Does a change in the choice or interconnection of
componentsiinrawvariantpproductimply-archange in the family architecture?

178 J. Bosch and A. Ran

In this section we present some views on these questions. These views should not
be regarded as final in any respect. Their main purpose is to evoke discussion of these
topics and attention to the subject.

Architecture Change May Be a Good Sign

Sometimes a change in architecture descriptions does not reflect a change of the
architecture, but rather a change in our understanding of the system, although some
may argue that our understanding IS the architecture. In any case such a change
should not be regarded as evil, but rather as a positive development, maturation and
evolution of the architecture in the true sense.

For example in one of the projects a few years ago we faced a peculiar situation.
We were building a network product that supported persistent configuration data for
line cards without central storage. That means that a newly inserted line card was “by
default” configured using last good configuration of the card in the same slot.
Configuration information had to be at all times replicated to multiple cards so it
could survive removal of an arbitrary card. Naturally, this functionality was hidden
inside card default configuration component and did not show in the top-level
architecture diagrams.

Well into the implementation we realized that much of the functionality of the
default configuration component was about implementing persistent storage on a node
that did not have any “central unit”. The implementation was clean though and
properly layered. We decided there should be an explicit component in the
architecture that would manage persistent data. This would be useful in a fully
distributed node for other components that needed persistent data. This also would be
useful when implementing a node with a central unit that can host persistent data.
Since much of complex functionality of data replication will be kept separate from
other functions it can be removed when not needed.

Project management did not permit the change in the architectural description of
the system. The argument was that a change in the architecture and introduction of a
new component so late in the project might compromise implementation schedules. In
reality the change would enable several groups to better utilize already developed
functionality and would better support variation and would not require any change,
except in the interpretation of what we were building.

Architecture Change May Be a Bad Sign

We have learnt to accept change in software development and, especially when we
speak of product families, change and variation seem to be the common case rather
than an exception. One should however keep in mind that proper architecture should
prevent unnecessary change.

Here is an explanation by example. An interworking unit is situated between two
different networks. Its function is to translate signaling and data of one network into
those of the other. Say, we are building a family of interworking units (a job that
needs to be defined in a lot more detail of course). In a typical situation there would
be.a-(at-least-one).specific-kind-of line-card-for each kind of network that our unit can

Evolution of Software Product Families

179

interwork. The line cards are physically interconnected with some kind of cross-
connect or bus technology. See Fig. 2. 2.

Line Card —\V F Line Card
Line Card Cross Connect Line Card
Line Card J 4\— Line Card

Fig. 2. Physical structure of an interworking unit

Fig. 3. is a simplified illustration of an almost realistic architecture of data plane
software for a line card of an interworking unit. The incoming traffic is analyzed and
the line card to which it should be directed is determined by the internal routing
component. It is then sent over some cross-connect device to the appropriate line
cards. There it needs to be converted so it can be sent out to the other network.

user traffic

user traffic and

l?:fcf)ir:mg internal routing
Link Control User Data
Protocols Routing
. Cross-Connect
routing update Device Driver
Internal
Dgs:::veoz)kriear Routing :
Protocols internal
routing
outgoing foreign
traffic traffic

Converter

Outgoing Traffic

Fig. 3. A bad example for architecture of line card software

The software on the line card is specific to the network it is connected to. Since it
needs to accept traffic from cards that are connected to other networks however it also
depends on the kinds of the networks the other line cards may be connected to. As a
result every time there is another kind of network we want to support with our
interworking units, the outgoing traffic converter component for every supported
networksshouldsgetranothervariantzlf - werare planning to interconnect N networks we

180 J. Bosch and A. Ran

will need N” of outgoing traffic converter components. Although internal routing of
incoming traffic should not depend on the specific network the line card is connected
to, in this design, it seems we will have to maintain a variant per network.

There is, of course, a well-known solution that avoids these problems that uses an
internal representation and only requires converters from and to this internal
representation. This is illustrated on Figure 4. If we are planning to interconnect N
networks we will only need to develop and maintain 2N of traffic converter
components. Also common functionality such as internal traffic routing will be part of
the family architecture and will be reused without change with all line cards.

user traffic internal traffic

Link Control Incoming Traffic Internal Traffic
Protocols Converter Routing

incoming traffic routing update’—/h routed traffic

Network IO internal Cross-Connect

Device Driver Routing Device Driver
Protocols

T
outgoing traffic internal routing
|

internal traffic

Outgoing Traffic
Converter

Fig. 4. A better example for architecture of line card software

Architecture Change May Be a Misunderstanding

Architecture is always an abstraction. One implication of this fact is that architecture
of a single system does in fact describe a class of systems with potentially significant
variation in their function, features, and quality attributes. How then architecture of
software family is different from architecture of a specific system?

This is not a philosophical question; at least not only. We think that much of the
perceived change in the architecture of software families is due to misunderstanding
of what constitutes family architecture in the first place.

For one, when talking about architecture of software family we may need to revise
our understanding of software architecture being the interconnection of main
components. In most software families the choice of components and their
interconnection may change significantly in each variant product. If there is
something that can be called family architecture it probably needs to be concerned
with something else.

To communicate a concept one can define it or refer to a prototypical instance. Our
current approach to family architecture is that of prototypes. Family architecture is
represented by the architecture of a prototypical system. The prototype approach has

Evolution of Software Product Families 181

well-known limitations: abstract concepts have no prototypes, prototypes over specify
the concepts they represent. For example, the prototype may have specific properties
that vary significantly among the instances of the concept.

The same is true when the prototypical approach is used to represent software
family architecture. Therefor much of the change we perceive in family architecture is
not an essential change. If we could separate the definition of the family architecture
from accidental properties of the prototype, we would perceive less change in the
family architecture and would also be able to better preserve it against unintentional
alteration.

Architecture can be described as a set of decisions or assertions about the structure
and the texture of software. What we propose as the first step is to group the
assertions based on the sets of systems for which they are true. Each set of systems
forms an architectural scope. Interesting groupings of architectural decisions partition
the corresponding system instances into a set and its proper subset, or non intersecting
sets.

Subsets correspond to more specific architectural scopes as for example product
family within an application domain. Non intersecting sets of instances represent
architectural scopes of variants as for example variant products within a product
family, or product families in an application domain.

This is of course just a way to think about it. In reality nothing fits clean, simple

classifications, or makes tree structures. Still some progress can be made by keeping
in mind an ideal. A useful hierarchy of architectural scopes may include
variant architecture,
dynamic variant architecture,
evolving system software architecture,
family software architecture,
domain-specific software architecture,
reference architecture.
Let us shortly describe characteristic concerns of few of these architectural scopes.
Domain-specific software architecture (DSSA) defines essential domain concepts and
functional partitions (structure and APIs) that enable development of shared
platforms, components and component frameworks for construction of software in the
specified domain. DSSA is typically concerned with domain-specific infrastructure.
This may include selection of operating system, middleware, and data persistency
services. DSSA may also specify other components and component frameworks
providing more domain-specific functionality that is useful for most systems in the
domain. For example DSSA for communication network elements may include a
node configuration framework, user authentication and access authorization
components. DSSA should be defined on the level of abstraction on which the
variation between different systems in the domain is not visible.

Software architecture of a product family (SAPF) defines concepts, structure and
texture necessary to achieve variation in features of variant products while achieving
maximum sharing of parts in the implementation. It is similar in intent to DSSA
except that while focus of DSSA on commonality and uniformity the focus of family
architecture is on achieving variability. An appropriate scope for the family can be
determined by bounded complexity of family architecture. When there are too many
differences between variant products or too many dependencies this will be reflected
in the complexity of the family architecture. This is why SAPF defines a smaller

182 J. Bosch and A. Ran

architectural scope than DSSA. Note that product families exist primarily on the
implementation level and therefor may include variant products intended for different
use. Those variant products may differ from each other in their essential features. This
often implies that SAPF does not make decisions regarding specific product
component structure, but only establishes patterns or mechanisms for creating
structures common in the product family

Evolving system software architecture (ESSA) defines the stable structure and
flexibility parameters of the specific system. ESSA defines support for variability in
the capacity of the essential features and selection of the secondary (or optional)
features provided by the product. ESSA specifies the component structure of the
system in write-time and run-time component domains. ESSA is specifically focused
on provisions for extension and evolution as well as variation in optional features and
feature capacity as may appear in a single product evolution or in a line of products
that coexist at the same time.

It is essential that architectural descriptions will be properly partitioned along this
hierarchy of architectural descriptions. Thus if the target is creation of an evolving
system the specific variant architecture needs to be described in relation to dynamic
variant architecture, which is in turn defined in relation to evolving system
architecture.

The paper “A Two-Part Architectural Model as Basis for Frequency Converter
Product Families” presented in this workshop by Hans Peter Jepsen and Flemming
Nielsen is a fine example of how architecture needs to be to defined for different
architectural scopes, and how architecture defined in more general architectural scope
creates the context in which architecture of the more specific scope is defined. They
partitioned architecture of frequency converter control software to three architectural
scopes. The most general scope grouped decisions that are applicable to a wide
application domain of input-enabled control systems. These were mainly expressed as
separation of continuos processing done in “control loop” and event based input of
control parameters. The next most general architectural scope collected decisions
regarding the communication mechanism employed between event driven component
cluster and components in the control loop. The third architectural scope explored in
the paper has grouped decisions regarding specific functions performed by frequency
converters.

It could be worthwhile in this example to further separate and group architectural
decisions to better control change and evolution of architecture. It, of course, always
depends on the specific case which architectural scopes should be separated and
explored independently from the others.

Discussion

The discussion at the evolution session touched upon several interesting points. Henk
Obbink emphasized the fact that however well we plan the architecture to be future-
proof the future will always surprise us. Changes to architecture are inevitable and
understanding how to introduce the changes and when it is worth while to integrate
old variant products with family architecture that has evolved is non trivial.
Dayvid_Weiss_raised_an_important_question: What are the resources that that
allocated to manage evolution of product families at different companies. This is a

Evolution of Software Product Families 183

single number that can indicate to us the perceived importance of architecture
evolution in software development. We were not able to get any coherent answer or
estimation during the session, but the question deserves close attention by researchers
in the field.

Jean-Marc DeBaud introduced the topic of economic viability of software family
evolution. He pointed out that there was little mention of criteria upon which the
decisions to evolve or not to evolve an architecture could be made. In particular, when
is it beneficial business-wise. This should be one of the primary issues to discuss,
though of course, the technical evaluation of an architecture in the light of a proposed
change is principal as well. This leads back to the notion of economies of scope. As
Jean-Marc put it: “To me the evolution of any family platform can only be relevant,
together with possible added new business rationales. If the evolution take place
within the constraints placed on the family by the originally set (or later modified)
economies of scope, then it makes sense. If the proposed evolution takes the platform
outside those economic boundaries, then that evolution should not be done. As we
have put together a method to define the economy .of scope and truly propagate them
at the architecture level, I think we are building a framework to put a family
engineering without too much over- or under-design of the core assets.”

References

[1] U. Holzle, ‘Integrating Independently-Developed Components in Object-Oriented
Languages,” Proceedings ECOOP’93, pp. 36-56, 1993.

[2] Daniel Hdggander and Lars Lundberg ‘Optimizing Dynamic Memory Management in a
Multithreaded Application Executing on a Multiprocessor’, Proceedings of ICPP 98, the
27th International Conference on Parallel Processing, Minneapolis, USA, August 1998.

[3] Mikael Svahnberg, Jan Bosch, ‘Evolution in Software Product Lines: Two Cases’, Journal
of Software Maintenance, Vol. 11, No. 6, pp. 391-422, 1999

Ol Ll Zyl_ﬂbl

Product Family Techniques Session

David M. Weiss

Lucent Technologies Bell Laboratories
Naperville IL 60563, USA
weiss@research.bell-labs.com

The papers in this session were mostly based on the authors’ experiences in creating
industrial product families, describing the difficulties they had, and the solutions they
found to them. Most started with some set of techniques in mind and modified them
as necessary to make them more workable in real situations. The following papers
were included in this session.
e Beyond Product Families.
Context: Several consumer electronic product lines, with commonality across
them
Problem: How to take advantage of sub-families across product lines?
Solution
eSubsystems were used as the unit of commonality.
eInterfaces were strictly controlled, with variability and commonality controlled
through the interfaces, using a module interface language for explicit interface
specifications
e A disciplined approach was taken both to the development process and to con-
trol of the product population architecture.
The techniques described have been and are being used in creating the members of
a product population in the consumer electronics industry.
e Requirements Modeling for Families
Context: Family of safety-critical medical systems with much customiza-
tion/many potential configurations
Problem: How to agree on and control requirements and specify them precisely?
Solution:
oA family of requirements documents designed for different audiences and pur-
poses
eFeatures, use cases
eRequirements object model for concepts, UML-based
eProvide intellectual coherence
The emphasis was on making the concepts underlying the family precise and con-
trollable. The techniques have been and are being used in creating a family of
medical imaging systems.
e Creating Product Line Architectures
Context: The scope of a product line has been defined, and commonalities and
variabilities have been analyzed, using the PuL.SE process.
Problem: How to create a family architecture systematically?
Solution: Use an iterative process based on scenarios (use cases)
eGroup scenarios by importance
eCreate evaluation. plan. (test.cases)

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 184-186, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Product Family Techniques Session 185

eDerive architecture (components, relations, decision model, mechanisms)
eEvaluate
This process is in the stage where it is ready to be tried on a real industrial prob-
lem.
e Extending Commonality Analysis
Context: Embedded systems with considerable environmental interaction and
safety-critical, real-time concerns, particularly aircraft engine thrust-reverser
systems
Problem: How to deal with interactions in commonality analysis, and with vary-
ing detail in information
Solution: Introduce hierarchical structuring among commonalities and variabil-
ities resulting in a layered structure, where each layer is defined by a set of vari-
abilities with an accompanying set of commonalities determined by fixing the
decision for the corresponding variabilities.
The method provides both conceptual and notational support for dealing with
the layered structure.
The technique has been applied to a family of aircraft engine thrust-reverser
systems.
e Stakeholder-assessment Of Product Family Architecture
Context: Product line architectures for information systems are mostly derived
from existing systems
Problem: How to evaluate family architectures with involvement of “family-
naive” stakeholders?
Solution: Extend SAAM
ePlug-in evaluation modules for family (and other) concerns
eIncludes both process steps and assessment methods
e Add assessment definition and conformance steps, with family planning in mind
Several themes were clearly apparent in all of the papers. All focused on the need
to be explicit, to be precise, to be systematic, and to manage complexity. These
themes were apparent in the use of techniques for controlling concepts and archi-
tectures, for documenting the results, and for introducing disciplined processes that
maintained conceptual integrity.

During discussion of the papers, the following issues emerged.

e How to prevent design/implementation details from creeping into requirements.
This, of course, is an issue that appears in all requirements determination methods,
not just those for families. Design or implementation details that appear in product
family architectures may result in an unintended distortion of the scope of the fam-
ily, allowing unwanted family members to appear, or desired family members to be
difficult to produce.

e What’s the difference between internally developed components, e.g., subsystems,
and externally acquired components? Externally acquired components may be less
expensive, but may be more difficult to use for the particular family, or may be
more difficult to maintain over time if they are not appropriately documented. The
vendor may not be responsive to the needs of the product line for the buyer. Inter-
nally developed components may be expensive to maintain and may not take ad-
vantage of new.technological developments that appear in the marketplace.

186 D.M. Weiss

e Can properties such as safety be reasoned about in a family context similarly to
system context? This is a difficult problem for which there is not yet a good solu-
tion.

e Does complexity added by family documentation make architects disinclined to
use it?

e What are limitations on testing family architecture, esp. if you can “only” build
prototypes? When is it safe to build a prototype?

e What verification can you do without prototypes, e.g., consistency checking on
specification?

e In the product population approach, there is no need to integrate subsystems into
platforms in order to build a system. This allows subsystem independence in deliv-
ering versions.

e The need for external reviews of architectures is perhaps more critical for family
architectures than for architectures for single products, since there is more at stake
in a product line architecture, and since the success of a product line architecture
critically depends on the ability to forecast the future needs of the family.

Nearly all of the papers showed an admirable tendency to reason from and learn from

experience, rather than to speculate based on theory.

Beyond Product Families:
Building a Product Population?

Rob van Ommering

Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Rob.van.Ommering@philips.com

Abstract. Building a large variety of products in a global organization, with
software development distributed around the world, requires an approach which
must not only have a sound fechnical basis for handling diversity and
commonality, but where also the software development process and
organization must be aligned optimally. In our case, the diversity of products is
so large that we’d rather speak of a product population than of a product family.
We find it helpful to use an approach that emphasizes composition over
decomposition, and that embodies different types of processes (architecture,
subsystem and product development) that are mapped to development sites in
the organization.

Introduction

Philips Consumer Electronics (CE) produces a large variety of products with
embedded software, for example televisions, set-top boxes, video recorders and DVD
players (see Figure 1). These products are managed as different product families,
where each family has variations due to differences in e.g. standards, world region
and price setting. The Philips CE organization is divided into business groups, where
each group is responsible for one of the product families mentioned above.

Fig. 1. Example products.

Philips Semiconductors (PS) is the main supplier of many of the ICs used in CE
products, and — reversibly - CE is an important (internal) customer for PS. But PS also
has other (external) customers, and PS not only delivers the ICs, but also software
with the ICs. Sometimes even, PS provides partial or full hardware solutions (printed
circuit boards or complete chassis), together with the software controlling that
hardware. PS is also divided into business groups, where each group manages a
family of hardware/software products.

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 187-198, 2000.
© Springer-Verlag Betlin Heidelberg 2000

188 R. van Ommering

Here is our problem. Using traditional approaches, such as applying software

libraries or object oriented frameworks, variation within single product families as
mentioned above can be managed. But for us, there are two (business) arguments why
this alone is not sufficient:

The ‘weak’ argument: there is also a lot of technical commonality between the
product families, so duplication of effort can be avoided. The argument is weak
since the problem can in principle be solved by hiring more people.

The ‘strong’ argument: we are missing the opportunity to sell combinations of
products, such as TV-VCR combi's and TVs with integrated set-top boxes. We
have the parts readily available, but since they are realized in different business
groups as different product families, they cannot easily be combined.

Here is our challenge. We must define a product population approach that allows our
business groups to optimally use each other’s software, while at the same time leaving
sufficient freedom to realize their own kinds of products. This not only requires sound
technical solutions, but it also affects the development process and organization. Note
that we distinguish between a single product (television), a product family
(televisions) and a product population (CE products, see Figure 2). The large variety
of products in the latter forces us to make fewer assumptions at the global level, and
to rely more on composition than on decomposition.

Single Product Product Application Evervthin
Product Family Population Domain fything
L Il 'l L L
4 L] | L] L] L] >
television | televisions | & Ui aICE] -
video products products products

Fig. 2. The spectrum of product diversity

The paper is organized as follows. After listing our most important sources of
inspiration in the next subsection, we describe our technical solution, our architectural
solution, and our solution for process and organization. We end with concluding
remarks.

Sources of Inspiration

Our most important sources of inspiration are listed below.

The Reuse approach as advocated in [1] makes a distinction between application
family engineering (AFE), component system engineering (CSE) and application
system engineering (ASE). Basically, it separates the creation of reusable
components (CSE) from the creation of products (ASE), where both take place
under a common architecture (AFE).

The Semiconductor business already builds and sells reusable components for
years, in the form of devices such as transistors and ICs, but also as printed circuit
boards and (recently) reusable core cells for creating ICs. The electronic hardware
domain has a long tradition in the creation of for instance interface and component
data sheets and of component catalogues.

Beyond Product Families: Building a Product Population? 189

e Microsoft COM [2] allows software components to be developed independently
from each other, and to be used in a variety of products, one of the necessary
preconditions for a component industry. It is not as much COM’s location and
language transparency that we value (although these will be very important for us
in the near future), but more the clear separation between interfaces and
components, the immutability of interfaces, and the ability to cope with the
evolution of components.

e Darwin [3] is an architectural description language that supports a component
oriented approach with an explicit (instead of implicit) architecture, which helps to
manage the complexity of products and components. Darwin also offers a
mechanism to make context dependencies of components explicit in the form of
requires interfaces.

The Technical Solution

We create product populations with a compositional approach rather than using for
instance a classical decomposition enriched with variation points [1]. Based on an
extensive knowledge of the full domain, we identify basic software components,
which we can combine in different ways into standard designs or subsystems, which
we can combine again in yet different ways into products (see Figure 3). More levels
of aggregation may be defined where necessary. As product population architects, we
have to manage the full composition graph.

Ej__l products

—> subsystems

components

Fig. 3. From decomposition to composition

This allows us to create products that are quite different from each other, while still
sharing non-trivial pieces of functionality. To achieve this, we must have:

e a component model that allows us to define components and use them recursively
to build new components until products are obtained.
e a way of making the architecture explicit, to manage the composition graph.

The component model that we currently deploy is called Koala. It inherits from COM,
and it contains an architectural description language based on Darwin to make the
architecture explicit. Koala is described in more detail elsewhere [4]. Here, we
highlight only a few of its distinguishing features.

190 R. van Ommering

Fig. 4. An example Koala component

Components

A Koala component is an encapsulated piece of software where all context
dependencies are routed through interfaces to be connected by the ‘user’ of the
component. This user can be a ‘compound’ component (see Figure 4), which makes
the model recursive. Products are top-level components without interfaces.

Two languages describe the architecture. An interface description language (IDL)
defines interfaces; a component description language (CDL) defines components and
configurations. A graphical representation of CDL is used to create component
diagrams. We find such diagrams to be of extremely high value in design discussions,
for two reasons:

e They are by definition consistent with the implementation.
e They represent finer relations than component-component, while not going into the
details of individual function usage.

Interfaces

As in COM, Koala defines interfaces as small groups of semantically related

functions. We find it useful to categorize the interfaces between a component and its

context as follows (see also Figure 5):

e Provides interfaces are the interfaces through which a component offers
functionality to its context.

e Explicit requires interfaces are the documented and connectable interfaces that
allow the user of the component to connect them to other components.

e [mplicit requires interfaces are the non-connectable (and often undocumented)
interfaces through which a component uses its environment.

Diversity.i i ough which the environment can fine-

Ol Ll Zyl_i.lbl

Beyond Product Families: Building a Product Population? 191

e Resource interfaces contain values through which a component can report to its
environment how many resources it uses

Provides,

Diversity Resource
@ Component #

Explicit iL
Requires .
Implicit

Requires

Fig. 5. Categories of interfaces

COM components have many implicit (and seldomly documented) requires
interfaces. Koala encourages to route all functionality that a component needs through
explicit requires interfaces, and to let a third party bind these interfaces at a higher
aggregation level. The ideas are extracted from GenVoca [5] and Darwin [3]. Note
that Szyperski [6] defines a component as having explicit context dependencies only
and as subject to composition by third parties. Also note that in hardware, ICs only
have explicit connection points.

Many people claim it’s wiser to access standard ‘computing platform’ functionality
through implicit requires interfaces, and to reserve the connectable requires interfaces
for product variation. We don’t agree for the following reasons:

e We want to reduce the context dependencies by explicitly monitoring it.

e We do not know all product variation in advance.

e Having all interfaces connectable allows us to instrument (trace, log, catch)
function calls at all locations in the architecture (see [7]).

We are especially keen to avoid the sticky toffee (or iceberg) effect: trying to use a
component from one application in another application usually reveals many (sticky)
context dependencies. A lot of this context (the base of the iceberg) may have to be
copied into the new application.

Diversity interfaces are used to parameterize components by name’ (as opposed to
e.g. the use of positional parameters as in Darwin). Diversity interfaces closely
resemble property lists in Visual Basic. Resource interfaces are the opposite: instead
of requiring values to be set by the environment, they inform the environment on the
component’s use of e.g. resources.

Diversity
There are two ways to implement two pieces of functionality that are alike but not the

same. If the pieces are for 80% the same, we make it one component with a diversity
interface, through which the component can be tuned into a product. If the pieces are

192 R. van Ommering

for 80% different, we implement them in two different components (some would call
this component variants, but we just treat them as different components). If 50% of
the required functionality is different, we split it up into one shared and two different
components.

Product creation involves selecting the appropriate components, defining values for
the diversity parameters, and binding them into products. This process of composition
is executed recursively. Diversity parameters of inner components can be defined by
outer components, or can be expressed in terms of the diversity parameters of outer
components (or a combination of these two!). This process is also repeated
recursively, resulting in what we sometimes call a spread sheet of diversity. Note that
it would be too cumbersome to have to define all diversity parameters of all
components at the top level!

If two compound components share a lot of internal structure but have some

differences in binding (structural diversity), then a switch can be used to connect
interfaces (the heptagon in Figure 4). The switch implements conditional binding
(like an ’if* statement in Darwin), and the condition can be expressed in terms of
diversity parameters of the outer component.
Finally, resource interfaces of components can be ’summed’ and bound to diversity
interfaces of other component supplying those resources. This allows for a certain
degree of self-configuring systems. This configuration is mainly executed at compile
time or initialization time.

Packages

In large development organizations, the technical notions of components and
interfaces alone do not provide sufficient clarity for who is allowed to use what. From
Java, we borrow the notion of packages, containers for component and interface
definitions that allow certain definitions to be public and others to be private.
Packages are developed by teams. Such teams can use private components and
interfaces in the construction of their public components. Because they are private,
changing them becomes a team issue, rather than a global issue. In the next sections
we will see that we use packages to implement subsystems.

The Architectural Solution

We presented the technical solution in the form of a component model. But we need
more to start large-scale development with this technology. We therefore defined a
global architecture in terms of concepts, rules, and a global decomposition of the full
functionality of the domain into subsystems that implement sub-domains. We cannot
define a single variance-free or parametric architecture (see [8]) for the entire product
population, since some of the products are just too different (a CD player and a TV
have little in common). We therefore regard our subsystems as reusable standard
designs, from which an arbitrary set of products can be created. This creation involves
both binding and gluing!

Beyond Product Families: Building a Product Population? 193

The Global Architecture and Framework

We can only define relatively few rules at the global level. These include:

e The component model (Koala), supporting name spaces and configuration.
e The code architecture: the language C, and a predefined directory structure.
o The documentation architecture: data sheets and implementation notes.

Most other architectural concepts are defined in regional architectures (see below).
Before we discuss that, we first define the notion of regions in terms of subsystems in
a reference architecture.

Computing

Abstraction
«—
Applications o o
PP 23| |§

5
AN API a E =
Es| |2
) A/V & data Oow o
Domain ¥ >
Abstraction platform

AN hardware] "

Fig. 6. The layered reference architecture

The Reference Architecture

Our reference architecture consists of a simple model that consists of three layers:

e software that abstract from the physical computing platform;
e software that abstract from the physical audio/video processing hardware;
e software that implement services and applications on top of this.

Note that this separation is not time-proof: we found that there is a tendency for
functionality to shift over time from the A/V hardware domain via the applications
domain into the computing abstraction domain. An example is audio streaming, which
started using dedicated A/V hardware, then as computing capabilities grew became
applications on general-purpose operating systems, and is now sometimes part of the
operating system.

Figure 6 shows how we visualize the three layers to indicate that there are two
independent axes of abstraction (right to left abstracts from computing hardware,
bottom to top from domain hardware). The layers themselves are further split into
subsystems as defined in the next section. Layers themselves are not subsystems or
components; we just use them for a coarse classification of our subsystems into
computing hardware dependent, A/V hardware dependent, and hardware independent.

Ol Ll Zyl_i.lbl

194 R. van Ommering

Subsystems

In a single product, a subsystem is a large compound component that implements the
functionality of a certain subdomain. A product consists of one to several dozens of
subsystems; subsystems form the first level of decomposition.

Subsystems contain smaller components. The definitions of these components are
reusable as well in our product family approach, but the instances are encapsulated by
the subsystem (or more precisely, by the compound component). In other words, the
instances of the smaller components can only be accessed through interfaces of the
subsystem. Our component model ensures this.

In large-scale development, it is wise not only to encapsulate component instances
but also certain component definitions! This allows a subsystem development team to
use small components to build the subsystem, without being forced to freeze the
definition of such small components. As implementation freedom, these components
can be changed without notice. A language like Java offers such scoping in the form
of packages with public and private entities, which we readily adopt (as described
above). Not only component definitions but also interface definitions are handled this
way.

In a product population, different products may need different implementations of
certain subsystems. In the component model, this can be realized by a single
compound component with diversity interfaces, or by multiple compound components
(which can still have diversity interfaces!). The subsystem package can therefore
contain more than one public (compound) component.

Finally, subsystem variation can sometimes also be expressed in terms of a single
(large) compound component and a number of (smaller) glue components. A product
architect instantiates the compound component and glues it to other subsystems using
(a selection of) glue predefined components.

The terminology described above may be a little bit confusing. Just remember,
from a development point of view, a subsystem is a package of public and private
component and interface definitions. In a product, we often use the term subsystem to
denote a single large compound component of this package.

Regional Architectures

Due to the large variety of products in our product population, many architectural
concepts (and techniques) have a scope that is not global. To relieve subsystems for
which the concepts are not relevant, we define these concepts in regional
architectures.

Usually, a regional architecture involves one specific subsystem; we then speak of
the subsystem architecture. Our infrastructure subsystem for instance, implementing
the abstraction of the micro-controller as part of the computing platform, contains the
concept of a wake-up device, which is a device that can wake-up the controller from a
low-power standby state. This concept is mainly limited to the infrastructure
subsystem, and is only described there.

Sometimes, a regional architecture involves more than one subsystem. An example
is the software control of the audio and video hardware devices in the A/V platform.
Agnumbeiyofyconceptspplaypagioleghereiypower-up and down, exchange of signal
measurement information between the software components, and persistency of

Beyond Product Families: Building a Product Population? 195

control values. But since the A/V platform is implemented by more than one
subsystem, the concepts are defined in a regional architecture. Again, these concepts
do not play a role in other subsystems, so they are not part of the global architecture.

The Process and Organization Solution

We discussed the technical and architectural solutions. Now it’s time to describe the
process and organization. As Figure 7 attempts to illustrate (by the way, this is also
our logo), our approach embodies at any moment in time a single common global
architecture, a set of reusable subsystems, and a set of products created with these
subsystems. To evolve these assets over time, we define projects which we consider
to be temporary activities, with a clear start and end point in time. They have the sole
intention to ‘newly or further develop’ the architecture, one or more subsystems, or
one or more products. The architecture, subsystems and products have a much longer
life time than the projects.

Architecture

__—

Products Subsystems

Fig. 7. Architecture, subsystems and products

We started our approach by assuming that a project develops either one subsystem or
one product (or the global architecture). Soon, however, we found that the overhead
associated with a project sometimes makes it necessary to combine the development
of multiple subsystems into a single project. But we never let a project develop both a
reusable subsystem and a product, to avoid conflicts of interest!

Documentation Architecture

A topic that most software architects consider to be of second order of importance is

that of how to set-up the documentation of the software. For the development of a

single product, indeed a classic approach of writing a client requirement specification,

a software requirement specification, a global design, a detailed design, and then the

implementation can be followed. In a product family (or population) approach,

however, this does not prov1de the optimal structure to store information. We found it
a at lea VO Wa is ‘common practice’:

196 R. van Ommering

e We separate interface definitions from component descriptions.
e We do not write requirement specifications; we write data sheets (user manuals)
instead.

Separating interface definitions from component descriptions seems cumbersome at
first sight, but the added investment (of writing two documents) is earned back as
soon as multiple components provide or require an interface of the same type. The
idea of writing component data sheets is copied from hardware development. It
describes the component from a user point of view, and not of a developer!

Next to these, we write architectural documents and component implementation
notes in a more traditional way. Note that architectural documents are written at the
global and regional level, and that implementation notes contain global and detailed
design information, depending on the level of aggregation of the component in
question. The statements above concern the product documentation; project
information is documented in the usual way.

The Project Archive(s)

It is not uncommon for modern software projects to set-up three different archives:

e asource code archive
e a documentation archive
e a web site

We integrate these three archives into one single archive, which is automatically
deployed on our company intra-net. This allows all developers in all sites access to all
information. This 'open source’ idea greatly enhances the communication between
sites - we have no secrets for each other. Component orientation in fact induces this
integration of archives: in our archive, each (lowest level) directory represents a
component, with source code, documentation and web presentation!

Configuration Management

Configuration management (CM) systems are typically used for the following
purposes:

to manage a version history of files, components, et cetera,

to manage diversity (platform and product variation),

to manage multi site development (distributed configuration management),
to control the building of products.

We limit the role of a CM system to the management of the version history alone.

e Diversity is explicitly managed in our component model (by creating different
components, or by defining diversity interfaces), instead of ’hiding’ it in a CM
system;

e Multi site development is managed by true client-supplier relationships, as
explained below.

Beyond Product Families: Building a Product Population? 197

e The build process is controlled by our software development environment, which
allows us to choose state of the art solutions, instead of having to rely on the build
facilities as delivered with the CM system.

Each subsystem is developed at a single site (but the site may develop more than one
subsystem). The site does not share a CM system with other sites. Instead, the site
releases its software in the form of ZIP files on the intra-net (after thorough testing, of
course). Product development projects download the required versions of the required
subsystems, and bind and glue their components together to form products.

One side effect worth mentioning is that we can build our applications on a
notebook at home or in the plane (i.e. outside the scope of the CM system), which we
find to be very convenient.

The Organizational Solution

Our software development is organized in terms of projects. As explained above,
these projects either develop subsystems (design for reuse) or products (design with
reuse). Each project is executed at a single development site. When allocating projects
to sites, the capabilities of the sites are taken into account. These capabilities are
explicitly managed, to improve the development performance on the long term.

Planning subsystem and product releases is done using a road map that shows the
products of the coming few years, and the required functionality of subsystems. This
roadmap is a living document; it is continuously updated to reflect the newest
information. The person that is responsible for the subsystem projects is not also
responsible for products, but instead reports directly to a senior manager in the
organization.

Concluding Remarks

We have shown how we develop a large and diverse family of products. We use the
term population to emphasize that the differences between products are so large that it
is not feasible to define a large part of the architecture at a global level. Instead, our
global architecture contains only the necessary elements for cooperation, and much of
the architecture work is shifted to regional architectures. Other typical elements of
our approach are:

Our paradigm emphasizes composition over decomposition;

We make diversity explicit in our architecture;

We use a client-supplier relation between product and subsystem projects;
We write data sheets (user manuals), instead of requirement specifications.

The approach is currently used to develop a product family of up-market televisions
by more than one hundred people at five different sites. The development of a wide
range of products (making it a true population) will start this year. But we are already
observing that our approach indeed allows us to create a large variety of products,
both in the way with which we can sét-up test configurations for individual

198 R. van Ommering

components or subsystems, as in the way that we can create combination products in
advanced development projects.

Many people have contributed to the ideas, their implementation, and my ability to
present them in a (hopefully) clear way in this article. I would like to thank Pierre
America, Hans van Antwerpen, Reinder Bril, Gerrit Muller, Henk Obbink and Jan-
Gerben Wijnstra.

References

[1] Ivar Jacobson, Martin Griss, Patrick Jonsson, Software Reuse — Architecture, Process and
Organization for Business Success, Addison Wesley, New York, 1997, ISBN 0-201-92476-
5.

[2] Dale Rogerson, Inside COM, Microsoft's Component Object Model, Microsoft Press, ISBN
1-57231-349-8, 1997.

[3] Jeff Magee, Naranker Dulay, Susan Eisenbach, Jeff Kramer, Specifying Distributed
Software Architectures, Proc. ESEC95, Wilhelm Schafer, Pere Botella (Eds.) Springer
LNCS 989 pp. 137-153 (1995)

[4] Rob van Ommering, Koala, a Component Model for Consumer Electronics Product
Software, Proceedings of the Second International ESPRIT ARES Workshop, LNCS 1429,
Springer Verlag, Berlin Heidelberg, 1998, p76-86.

[5] Don Batory, Sean O'Malley, The Design and Implementation of Hierarchical Software
Systems with Reusable Components, ACM Transactions on Software Engineering and
Methodology, 1 no. 4, pp. 355-398 (October 1992)

[6] Clemens Szyperski, Component Software: Beyond Object-Oriented Programming,
Addison-Wesley, 1998, ISBN 0-201-17888-5.

[7] Robert Balzer, An Architectural Infrastructure for Product Families, Proceedings of the
Second International ESPRIT ARES Workshop, LNCS 1429, Springer Verlag, Berlin
Heidelberg, 1998, p158-160.

[8] Dewayne E. Perry, Generic Architecture Descriptions for Product Lines, Proceedings of the
Second International ESPRIT ARES Workshop, LNCS 1429, Springer Verlag, Berlin
Heidelberg, 1998, p51-56.

ol Lalu Zyl_ﬂbl

Requirements Modeling for
Families of Complex Systems

Pierre America' and Jan van Wijgerden®

! Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
pierre.america@philips.com
: Philips Medical Systems, Veenpluis 4-6, 5684 PC Best, The Netherlands
jan.van.wijgerdenephilips.com

Abstract. This paper introduces an approach to the specification of system
families. The main ingredient of this approach is the definition of use cases
hand in hand with a requirements object model. Instead of specifying individual
systems, we specify a domain, i.e., a conceptual space of possible systems, in
which individual systems can be defined by fixing a number of variation points.
In that way we obtain a strong cohesion within the family and concise
specifications of its members. We also describe a process suitable for this
specification approach and indicate how the transition to the design phase can
take place. Our approach was validated in one large project and several smaller
ones.

1 Introduction

In many instances it is a good idea to conceive products to be introduced to the
market in the context of a product family, whose members share several internal and
external properties. Such a product family approach has many advantages, among
others in the areas of marketing, development, manufacturing, and maintenance.
During the development of such a family it is important to specify what is to be
expected of these products in a sufficiently precise way so that all people involved
(from marketing, development, etc.) agree on it without the possibility of significant
misunderstandings. We call this requirements specification. (This is not to be
confused with a specification of what is desired unilaterally, e.g., by the marketing
department, or a specification of how this is realized.) Note that for a product family
the requirements specification should make clear the properties of each individual
member of the family while also making explicit what they have in common.
Depending on the circumstances such a requirements specification could consist of a
single page or of thousands of pages.

Furthermore, from a development point of view, we want to ensure a smooth
transition from the requirements specification to the subsequent development phases
(design, implementation, etc.). Among others it should be possible to use the
documents developed for the requirements specification as a basis for the following
phases, without, however, limiting the designers’ freedom unnecessarily.

In this paper we describe a requirements specification method that is suitable for
families of complex; software=intensive;electronic products. The following sections

K. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 199-209, 2000.
© Springer-Verlag Betlin Heidelberg 2000

200 P. America and J. van Wijgerden

describe different aspects of our method: the kind of development projects for which
it is most suited, the documents that are produced, the way in which it supports
product families, the specification process, and the transition to the design phase.
Finally Section O briefly summarizes our experiences and Section 0 draws a
conclusion.

2 Context

The approach described in this paper was applied, among others, in a large
development project for a family of medical imaging equipment. Such a domain has
the following characteristics:

e The market is relatively mature: Even the relatively modern systems with digital
image processing have been around for more than ten years. Consequently, the
expectations of the users are very high and to meet those expectations, the systems
offer many possibilities to fine-tune them to the precise task at hand. This leads to
a high degree of complexity.

e The radiation produced by the systems for the purpose of diagnosis is potentially
dangerous to the health of patients and personnel. In addition, the high voltages
necessary to produce X-rays, the strong magnetic fields necessary for MR
(magnetic resonance), and the moving heavy machinery could constitute other
hazards. Therefore high demands are placed on the safety and reliability of the
equipment. This is one of the reasons why government institutions, such as the
American FDA, apply strict rules not only to the equipment itself but even to the
development process.

e The number of systems sold does not run in the millions, but in the thousands.
Moreover there are many possible options to configure systems. As a result it
rarely occurs that two systems have exactly the same configuration. Therefore it is
impossible to test every possible configuration exhaustively.

e Developing such systems requires the cooperation of many people with vastly
different expertise, ranging from VLSI designers to medical application specialists.

The project itself can be characterized as follows:

e [t is large, involving over a hundred developers, many of whom were new to the
domain.

e [t is carried out jointly by several departments that previously developed their own
product lines in relative isolation. As a result the different experts often used
different concepts and terminology for comparable things.

e Although time to market is, of course, important, the complexity of the developed
systems nevertheless leads to a project duration of several years. The resulting
architecture should have a lifetime of well over ten years.

Because of the above factors, it is clear that an exhaustive and precise specification
was necessary as a basis for further development.

Requirements Modeling for Families of Complex Systems 201
3 Requirement Specification Documents

Specifying the required functionality of complex systems like these medical imaging
systems in sufficient detail typically involves a large amount of documentation. Our
method structures this documentation as follows:

e The Commercial Requirements Specification (CRS) describes the positioning of
the system family members in the market. It only describes their features in very
broad terms. By its nature, the CRS is primarily written by marketing experts, but
it should be reviewed by developers to ensure its feasibility.

e The Systems Requirements Specification (SRS) sketches the features of the
family members, typically in the form of bulleted lists and tables without much
explanation of the terms used. This document and the ones below are typically
written by developers and reviewed by other stakeholders.

¢ The Functional Requirements Specification (FRS) gives a complete and detailed
description of the behavior of the systems in the family. Most of this is done in the
form of use cases: pieces of English text that describe the interaction between the
system and its users [5]. Despite its name, the FRS can also contain nonfunctional
requirements, which can either occur in the use cases (e.g., acceptable response
times for particular functions) or in a separate chapter. Since the total size of the
FRS can be very large, it is often useful to divide the FRS into chapters, so that
several authors can work on it in parallel. The method proposes to choose the
chapters according to areas of functionality, for example, distinguishing different
kinds of users or different phases in the user’s workflow. For medical imaging
systems, examples of chapter titles are Administration, Patient Positioning and
Preparation, Acquisition, Reviewing, and Archiving. Often these functional areas
coincide with areas of expertise for the several FRS authors involved. Note that
this subdivision of the FRS does not automatically imply a similar subdivision in
the design of the product family.

e A requirements object model expressed in UML [1]. This model explains the
concepts that play a role in the interaction between the systems and their users and
the relationships between these concepts. These concepts can range from concrete,
tangible pieces of hardware (e.g., an X-ray detector), via electronic representations
of real-world items (e.g., a patient folder) to abstract entities without a counterpart
outside a computer (e.g., user preferences). This requirements object model
provides a structured vocabulary for the FRS. In other words, all nontrivial words
that occur in the use cases should occur in the requirements object model as names
of classes, attributes, association roles, etc. Although the FRS is subdivided into
chapters, there is a single, shared object model, which provides the common
ground that ties the FRS chapters together and ensures that they talk about the
same things.

The structure of a use case deserves some more explanation here, since it is slightly

different from the literature [5]. For medical and similar professional electronic

equipment, a typical use case involves only a single user. In most cases this user has a

fairly simple interaction with the system (pushing a button, turning a knob, selecting a

menu item, etc.), so the sequence of events is not complex enough to justify, for

example, a UML sequence diagram. However, the effects, within and around the
system, caused by this interaction need to be described very precisely to avoid

202 P. America and J. van Wijgerden

ambiguity. For example, when increasing the image contrast, it is important to specify
precisely which set of images are affected by the change and whether the new contrast
will still be effective when the images are viewed next time. This is where the
connection with the model comes in as a conceptual framework to interpret these
detailed descriptions. In principle, these descriptions could be expressed in a formal
language, like OCL [9], but we prefer English because the specifications should be
readable by different kinds of stakeholders, not only software developers. In fact, the
goal is to write specifications that can be read as normal English texts by all people
that know the meaning of the terms that are used.

Developing an object model during the requirement specification activity is a new
element in our method compared with other approaches described in the literature [2]
[3] [4]. We propose to develop the use cases hand in hand with the requirement object
model (see also Section 0), combining to a certain degree the requirements
specification and analysis activities of other methods. Although we do not exclude
writing extensive use cases before any modeling is done, we do not consider the
requirements specification finished until these use cases are expressed in the
terminology defined by the object model.

Note that the construction of such a requirements object model is not completely
comparable to what other methods call analysis. The difference is that often such an
analysis is a first step in deciding how to implement the system’s functionality,
whereas our requirements model is intended to contain just enough information to
express what the systems does. Although in practice, this distinction is not always
completely clear, it is nevertheless much clearer than the distinction between analysis
and design in many other methods.

The most important advantage of our approach is a significantly improved clarity
and consistency of the FRS. While this could be achieved to a certain degree by
including a flat glossary, the additional structure expressed in the object model by
indicating the relationships of different items with each other increases this clarity and
consistency. For example, if the model indicates that an X-ray system can have more
than one X-ray detector, it becomes clear that a use case cannot just mention “the
detector” but must indicate which specific detector is meant. Other advantages of the
approach will be discussed below in relationship with the modeling and design
processes.

4 Product Family Issues

Since we are not specifying an individual system, but a whole family, the
specifications should reflect that fact. This section describes how our method
addresses this.

The most important principle is that, as much as possible, the specifications and the
model should not describe one or more individual products, but a domain. Here we
define a domain as a conceptual space of possible systems, which includes the current
and future members of our product family. In other words, the specifications and the
model should be as much as possible independent of the concrete choices for the
individual products to be implemented as members of the family. In this way, the
specifications_and_the model form_a _common basis for the whole product family,
stressing the commonalties instead of the differences between the products. This

Requirements Modeling for Families of Complex Systems 203

principle is important because it helps to eliminate inessential differences between the
products that would otherwise arise naturally, especially when different people are
responsible for different products in the family.

Nevertheless it is of course necessary to express the possible variation points
between the systems in the domain. In the object model these can be represented in
the following ways.

e Specialization: For a specific system, an object of a class in the model could be a
member of a subclass. Whenever this is foreseen, such a subclass can already be
included in the model, but this is not necessary. For example, an X-ray detector
may be a film detector, a combination of image intensifier and TV camera, a flat
solid-state detector, or any other kind of detector that may be invented in the
future.

XRayDetector

7

FilmDetector IITVDetector SolidStateDetector

e Multiplicity: Aggregations or associations in the model can have ranges for their
multiplicities, where the multiplicity for a specific system may have a single value
within such a range. For example, the model may indicate that an X-ray system
may contain one or more X-ray detectors, but of course any specific system will
have a specific number of detectors.

ImagingSystem XRayDetector
0.*

e Attributes: A particular system may have a particular value for an attribute of an
object in the model, taken from the type of the attribute in the model. For example
the maximum resolution and the maximum number of images taken per second
may vary among different detectors, even if they are of the same kind.

XRayDetector

MaxResolution : Int
MaxFrameRate : Int

Note however that occurrences of the mechanisms above do not always correspond
with system variation points: They could also apply to the data that is maintained by a
single system. For example, a patient folder could contain an arbitrary number of
study folders, and this number can even change over time within a single imaging
system.

204 P. America and J. van Wijgerden

Variations in the use cases between the systems in the domain are such that each
system supports its own subset of the use cases. Moreover, the behavior described in
certain use cases may depend on certain parameters, which could differ between the
systems. In this case, it is useful to include these parameters in the object model,
typically as attributes. More generally, the use cases can depend on several kinds of
items in the object model, e.g., the specific class of an object, the number and the
identity of the objects involved in an association, or the value of an attribute. (This
dependency can also occur if the model item is not related to a variation point
between systems in the domain, e.g., a use case could depend on the number of study
folders in a patient folder.)

In some cases, the straightforward application of the above mechanisms is not
enough, but an in-depth, domain-specific analysis is required to capture the essential
differences and commonalties between the systems in a domain. For example, while
modeling medical X-ray systems, we applied this to the so-called geometry, the
subsystem responsible for controlling the major moving parts in the system. The
analysis showed that the essential concepts in the area of geometry were not motors,
brakes, and C-arms, but positions and movements. All the systems in the domain
shared the same structures for relative positions of X-ray sources, detectors, and
patients. On the other hand, a movement could be characterized by two aspects:

e What is its clinical purpose? For example, rotating the X-ray beam around the
patient, or moving a detector out of the way.

e In which way does the user control it? For example, the movement could be
performed manually or by a motor.

On the basis of this characterization, the geometries of the systems in the domain
could be distinguished by which clinical kinds of movements they support and by the
control parameters of these movements (e.g., the maximum speed).

When all these measures have been taken, an individual system (possibly a product
in the family) can be specified by determining the set of supported use cases and
fixing the variation points in the object model (i.e., specifying the subclass in a
generalization, the multiplicities of an association, or the value of an attribute).

During the specification process it may be helpful to consider a small number of
specific systems, which may be actual envisaged members of the product family or
fictitious ones. By doing this, we can ensure that the abstractions in the FRS and the
model actually fit the intended concrete and specific instances. These specific systems
can also be included in the model, but in that case they must be clearly marked as
examples.

5 The Requirements Specification Process

We propose to involve as many stakeholders as possible in the requirements
specification process, since this will increase subsequent acceptance of the
specifications and the underlying model. Compared to the CRS and the SRS, the
involvement of developers in the FRS and object model will be typically be higher,
whereas the involvement of marketing people will typically be lower. For the FRS
authoring and object modeling we have good experiences with the following team
structure:

Requirements Modeling for Families of Complex Systems 205

e An FRS authoring team for each chapter of the FRS. Such a team will consist of
the primary author of the FRS plus a number of supporters, which can be experts in
the field or representatives of stakeholders. The responsibilities of this team are to
write the FRS chapter and to contribute to the requirements object model.

e A single object model control team (OMCT). This team consists of a small number
of people (three or four), including at least one person with experience in modeling
and possibly a designated scribe. This team does not need much domain
knowledge to begin with, since the FRS authoring teams will contribute that. The
responsibility of the OMCT is to maintain the object model and to ensure its
internal consistency.

Modeling can begin when the people in the FRS team have a good, but informal
understanding of the required functionality. Often they have acquired this familiarity
by being involved in previous development projects for similar systems. When
necessary this understanding can be enhanced by writing and discussing informal use
cases (along the lines of [5]).

In order to obtain a single, consistent object model that provides a basis for all the
FRS chapters, the model is constructed by overlapping modeling teams, where each
modeling team consists of one FRS authoring team plus the OMCT, supplemented by
additional experts whenever needed. Each such group has an initial modeling session,
typically lasting one or more weeks, in which the members of the group share their
domain knowledge and together construct a piece of the object model (which should
be consistent with earlier pieces, of course). Then FRS authoring can begin on the
basis of this initial object model and in the following period, return sessions with the
OMCT are held, e.g., a half or a full day per week, in order to fine-tune this model.
The typical changes to the model during this fine-tuning fall in the following
categories:

e While writing a use case, it turns out to be difficult with the concepts in the
existing model, so the model is changed to solve this problem.

e A more elegant way has been found to express a certain point in the model.

e Another modeling group has proposed a change in the model and this must be
integrated with the use cases written by the current modeling group.

Modeling outside these modeling teams should be discouraged, since in the
subsequent modeling sessions this tends to lead to a discussion about the merits of
different solutions, which is more difficult than a discussion about a problem and how
to solve it.

Here each horizontal bar represents the activities of a single FRS authoring team.
The black parts represent modeling sessions, which cannot overlap because the
OMCT must take part in each of them. The authoring work, indicated by gray parts
can take place in parallel with the other teams.

In such a time schedule, the OMCT is a shared resource, which could become a
bottleneck. In practice this danger can be mitigated by clever planning of the sessions,
since typically the people in the FRS teams do not all become available at the same
time. However, a strong continuity in the staffing of the OMCT is important, since its
members must be familiar with the complete object model and have a reasonable
overview of the contents of the FRS chapters.

206 P. America and J. van Wijgerden

The following picture illustrates the overall time schedule.

FRS Chapier | I
RS Chapier> IR
FRS Chapeer3 I

Il Modeling

B Authoring FRS Chapter » IRl

The advantage of the above process is that a lot of domain knowledge is exchanged
and shared early in the development process, even though only a part of this
knowledge can be consolidated in the object model or the FRS. (In any case, this
consolidated part is much larger than when working with a flat glossary.) Modeling in
overlapping groups has the following advantages:

e Many people can be involved in the process, which increases the quality,
completeness, and acceptance of its outcome.

e A lot of work (writing the FRS chapters) can be done in parallel.

e The modeling itself takes place in manageable groups.

e The overlapping part (the OMCT) can ensure consistency, not only in the contents
of the model but also in modeling style.

6 Towards a Design

The requirements specification artifacts described above serve as a solid starting point
for the design workflow. One output of the design workflow is a design object model.
The first step towards such a design model is a purely mental one, in which not the
model itself, but its interpretation is changed. For example, a UML class in the model
represents a (real-world or imaginary) concept when considered in the requirements
model, but in the design model the same UML class represents a programming
language class. Similarly, an attribute of such a class represents a property of the
corresponding concept in the requirements model, but in the design model it stands
for a set of access methods and possibly a data member. Of course, this step towards
an initial design model does not involve any new artifacts, because the description of
the requirements model can simply be reused, but probably because of this, the mental
step is a difficult one for many developers and it takes some time to get used to. More
on this issue can be found in [6], although the final approach described there is
different from ours.

The second step towards a design model consist of iteratively doing one of the
following:

e Extension: Adding packages, classes, attributes, operations, etc., as necessary.

oL fyl_llsl

Requirements Modeling for Families of Complex Systems 207

e Subdivision: Grouping classes into packages. (Attributes and operations are
already assigned to classes when they are introduced.)

e Assigning responsibilities: Every package, class, and operation should have a clear
and concisely described responsibility.

These steps are carried out under guidance of an architecture, which especially
addresses the non-functional requirements. Of course, a lot more can be said about
how to carry out these steps in order to arrive at a design that is optimized for a
product family. That is outside the scope of this paper, so for more information we
refer the reader to [7], [8], and [10]. However, we should mention here that feedback
towards the requirements specification process should make sure that in the unlikely
case that the requirements cannot be implemented within the constraints of the
development project, the FRS and possibly the object model are changed by the FRS
authors and the OMCT.

In any case, the result of these steps is a design object model that is a pure
extension of the requirements object model. The most important advantage of this is
the enhanced traceability: The relationship between the items in the requirements
model and the ones in the design model is clear.

At first sight, insisting that the requirements model is a pure subset of the design
model seems a very strong constraint: While the requirements model is constructed,
little or no thought is given to the design, and still the requirements model shapes the
design to a significant degree. Nevertheless, the following two principles make sure
that the designers have enough freedom to come up with an effective and efficient
design:

e The requirements model contains only those items that are necessary to explain
what happens in the system. The items related to how things happen (e.g., control
and interface classes) do not belong to the requirements model and can therefore be
added in complete freedom by the designer.

e Responsibilities are not assigned to items in the requirements workflow, but this is
left to the design. This again provides the designer with the freedom to assign the
responsibilities in a suitable way. For example, when the requirements model says
that a class has an attribute, this does not mean that the class also has the
responsibility to store the value of that attribute. Instead, the value can be stored
somewhere else or computed whenever needed.

7 Experience

As already mentioned in the introduction, our method was applied and refined in a
large development project for a family of medical imaging systems. The requirements
object model for that project became quite large, containing about 100 diagrams, 700
classes, 1000 relationships and 1500 attributes. The general feeling in the project crew
is that this way of requirements modeling and specification laid a solid and stable
basis of shared knowledge for further development and that the effort was well spent.
Even when the specifications changed somewhat during the project, only minor
modifications to the object model were necessary. The design effort was firmly based
on the requirements model; which'did endup as a submodel of the design model. It is

208 P. America and J. van Wijgerden

true that many designers, especially the ones that were not involved in requirements
modeling, had a natural tendency to deviate from the original model, an open
technical discussion always led to good designs that did extend the requirements
model.

Several smaller feasibility studies have confirmed that this approach is suitable
over a wide range of professional electronic systems.

8 Conclusion

In this paper we have described a method for specifying requirements for a family of
products. This method involves the construction of a requirements object model along
with the use cases that describe the functionality of the products. The result of this
method is a fairly precise specification for the whole domain, which can be
complemented with quite concise specifications for the individual products. We have
applied this method successfully to one large project and several small ones.

The most important things we have learned from this are the following:

e The construction of a requirements object model early in the development process
is very useful, especially in a large project, because it provides an explicit, shared
map of the concepts playing a role in the domain and that map can be used through
the whole development effort.

e Developing the use cases and the requirements model hand in hand leads to more
precise formulations of the use cases and provides a validation of the completeness
of the model, while still leaving maximal freedom for the subsequent design phase.

e Our way of constructing the model in overlapping groups allows many people to
participate in the modeling, while at the same time keeping the model consistent
and facilitating a considerable amount of work to be done in parallel.

e The most important aspect is not the individual technique used for specification,
modeling, designing, etc., but the way in which all the techniques fit together in the
overall development process.

Although we have tried this approach only on a variety of complex software-intensive
electronic systems, we envisage that it may well be applicable to a much larger range
of software systems.

Acknowledgements
This research has been partially funded by ESAPS, project 99005 in ITEA, the Eureka
212023 Programme.

Many people at Philips Medical Systems, Philips Research, and other parts of
Philips have contributed to the conception and refinement of our method by their
cooperation and support. They are too numerous to mention here but that does not
diminish our gratitude. Herman ter Horst and Jan Gerben Wijnstra gave valuable
comments on earlier versions of this paper.

Requirements Modeling for Families of Complex Systems 209

9 References

(1]
[2]
(3]
(4]
[5]

(6]

(71

(8]
(91

Grady Booch, Ivar Jacobson, and James Rumbaugh: The Unified Modeling Language
User Guide. Addison-Wesley 1998.

Bruce Powel Douglass: Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns. Addison-Wesley 1999.

Desmond F. D'Souza and Alan C. Wills: Objects, Components, and Frameworks with
UML: The Catalysis Approach. Addison-Wesley 1998.

Ivar Jacobson, Grady Booch, and James Rumbaugh: The Unified Software Development
Process. Addison-Wesley 1998.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard: Object-
Oriented Software Engineering: A Use Case Driven Approach. ACM Press/Addison-
Wesley 1992.

Hermann Kaindl: Difficulties in the Transition from OO Analysis to Design. IEEE
Software, pages 94-102, September/October 1999.

Henk Obbink, Rob van Ommering, Jan Gerben Wijnstra, and Pierre America: Component
oriented platform architecting for software intensive product families. Symposium on
Software Architectures and Component Technology, Enschede, The Netherlands, January
20-21, 2000. Kluwer Academic Publishers.

Ben J. Pronk: Medical Product Line Architectures — 12 years of experience. Proceedings
of the First IFIP Working Conference on Software Architecture, 1999.

Jos B. Warmer and Anneke G. Kleppe: The Object Constraint Language: Precise
Modeling With UML. Addison-Wesley 1999.

[10] Jan Gerben Wijnstra: Component Frameworks in a Medical Imaging Product Family.

Third International Workshop on Software Architectures for Product Families, Las Palmas
de Gran Canaria, Spain, March 15-17, 2000 (this volume).

ol Ll Zyl_i}sl

Creating Product Line Architectures'

Joachim Bayer, Oliver Flege, and Cristina Gacek

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

{bayer, flege, gacek} @iese.fhg.de

Abstract. The creation and validation of product line software
architectures are inherently more complex than those of software
architectures for single systems. This paper compares a process for
creating and evaluating a traditional, one-of-a-kind software
architecture with one for a reference software architecture. The
comparison is done in the context of PULSE-DSSA, a customizable
process that integrates both product line architecture creation and
evaluation.

1 Introduction

Product line engineering is an approach to improve development efficiency for
families of systems by facilitating large-scale reuse. It typically focuses on building a
reuse infrastructure that can then be used to derive the product line members. A core
asset of such a reuse infrastructure is a product line architecture (also known as
reference architecture or domain-specific software architecture). Software
architectures are a set of components, connectors, constraints imposed on the
components, connectors, and their composition, and a supporting rationale. They are
presentable in various ways — different views supporting different needs [4]. A
product line architecture is a software architecture for supporting a complete product
family, it reflects common parts as well as variabilities among the various products.
Product line architectures define the essential parts of the reuse infrastructure and thus
ensure that shared and instance-specific components fit together for all product line
members.

In this position paper, we illustrate the specific aspects of architecting for product
lines in the context of PuLSE-DSSA, the reference architecture development
component of the PuLSE™ (Product Line Software Engineering)2 method [2]. PuLSE
is a method for enabling the conception and deployment of software product lines
within a large variety of enterprise contexts. To achieve this, the different PuLSE
components are customizable to different situations and contexts.

"This work has been partially funded by the ESAPS project (Eureka X! 2023 Programme, ITEA project
99005).

’PuLSE is a registered trademark of the Fraunhofer IESE

F. van der Linden (Ed.): TW-SAPE-3, LNCS"1951, pp. 210-216, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Creating Product Line Architectures 211

domain model

generic

domain decisio
model

(scope definition)

workproducts
T

PuLSE-DSSA

backtrack

create scenarios

generic
scenarios

2
group and sort scenarigs]

architecture
creation plan

define test cases

1-

aggly scenarios to architecture
elaborate architecturg evaluation plan
Legend integrate existing-|
t
_‘ backtrack L __°°TPOnents
:) product analyze problem | build architecture |
A —’ optional) iterate L _prgtgtypi 3
— — =" product 6
[brocess . architecture
) architecture (prototype
r = = 1 optional ~_ e =
L - — J process architecture architecture
description decision model
<> decision
—> produce/ evaluate
consuime architecture
control
flow architecture finished

Figure 1 PuLSE-DSSA Process Overview

2 PuLSE-DSSA

PuLSE-DSSA is based on the generic architecture development process shown in
Figure 1. This process is generic because it abstracts from the differences between
one-of-a-kind and product line architecture development, and also from the
customizations necessary to use this process in different application contexts. The
only product line specific aspects shown in Figure 1 are the input and output products
of PULSE-DSSA. The input is a scope definition and a domain model, where the
former defines the business case for the development of the product line and the latter
describes commonalities and variations of applications within the product line. Output
of PULSE-DSSA is a product line architecture as defined in the introduction.

In the following subsections, we present for each process step a generic description
and then point out the product line specific aspects, including customizations, that
have to be taken into account when developing a reference software architecture.

212 J. Bayer, O. Flege, and C. Gacek

2.1 Create Scenarios

The first step in architecture creation is to determine the most important requirements.
These are captured in scenarios that describe critical use-cases (i.e., how the system is
used to perform a specific task) as well as system level quality objectives (i.e., non-
functional requirements) and constraints. This step is necessary for a generic process
in order to decouple it from the various kinds of inputs (i.e., requirements
specifications) that are available in different contexts.

Product Line Aspects

In the PuLSE product line development process, the input for this step would be a
product line model consisting of generic workproducts (i.e., products describing
requirements in terms of commonalities and variabilities) and a decision model.’

Conventional scenarios are described on an instance level, which makes it difficult
to convey the variability information needed for product line requirements and to
extract the information that applies to a particular instance. Therefore, it is beneficial
to use generic scenarios that represent commonalities and variabilities like the product
line model’s generic workproducts, and are also instantiable via the domain decision
model.

Managing traceability information is important to achieve effective maintenance
and consistent change management. This is even more valid in a product line context,
because a product line infrastructure is a strategic investment and will almost
certainly be maintained for a long time. As a first step towards full traceability, the
scenarios have to be linked to elements of the product line model.

2.2 Group and Sort Scenarios

This step yields the architecture creation plan that defines the iterations in which the
architecture development is performed. The first iteration deals with the most
important group of scenarios, the second one with the second most important group
and so forth. The order in which scenarios are addressed is highly significant, because
each iteration’s design decisions impose constraints on the architecture that delimit its
further evolution. Unfortunately, grouping and ordering of scenarios is also a highly
subjective task, as it relies on a combination of domain knowledge (ability to judge
the importance of a scenario) and system architecting experience (ability to anticipate
how a scenario could affect the architecture).

*A decision model captures variability in a product line in terms of open decisions and possible resolutions.
In adecision model instance, all decisions are resolved. As variabilities in generic workproducts refer t o
these decisions, a decision model instance defines a specific instance of each generic workproduct and thus
specifies a particular product line member.

Creating Product Line Architectures 213

Product Line Aspects

The judgement of a scenario’s importance cannot be based on its expected impact on
the architecture alone. A complementary factor is the overall importance a scenario
has for the product line. Therefore, the information contained in the scenarios is
insufficient and has to be augmented with the scope definition. Ideally, the scope
definition is based on a process that seeks to estimate the economic value each
distinct feature would have for the product line (e.g., PuLSE-Eco [3]). Assuming that
economic value and importance correlate, some of the subjectivity of this process step
can thus be reduced.

2.3 Define Test Cases

For each group of scenarios, test cases are defined that will be used to evaluate the
architecture at the end of each iteration. It should be possible to conduct the tests
automatically in order to facilitate regression testing, which is particularly important
for an iterative development process. Specifying test cases before the actual
development begins has a number of benefits, including a better understanding of the
requirements and avoidance of creating tests that, due to a fixed perspective, merely
support what has been developed.

It is important to note that evaluation needs have an impact on the choice of how
the architecture should represented, because different notations allow for different
kinds of (automatic) evaluations.

Product Line Aspects

In a product line context, instance- and family-specific test cases have to be
distinguished. The former do not differ from those used in one-of-a-kind architecture
development and are therefore less of a problem. The latter focus on specific kinds of
system level quality objectives such as maintainability, understandability, and
reusability. These qualities play a critical role for the appropriateness of a reference
architecture. However, it is extremely difficult to assess the degree to which theses
qualities are achieved by a given architecture. This problem is hardly addressed by
any architecture evaluation method (e.g., SAAM' [5], ATAM’ [6]) nor by any
architecture description language [7]. Neither have — to our knowledge — any
guidelines been published on how testing should be performed to ensure that a
product line infrastructure will be adequate.

‘SAAM assesses the impact of anticipated changes (new requirements) to predict modifiability. The idea
behind product lines is to consider anticipated changes already during architecting. Therefore, we should
expect that a SAAM scenario applied to a product line architecture is satisfied by a particular instance of
that architecture without needing any noteworthy changes

A TAM provides a framework for evaluating architectures, but does not provide the methods that are
required to use the framework (e.g., once you have a method to describe and assess the understandability of
an architecture, you could use ATAM to investigate the trade-offs between understandability and other
quality attributes).

214 J. Bayer, O. Flege, and C. Gacek

2.4 Apply Scenarios

The group of scenarios associated with the current iteration is used to create the initial
architecture or to refine/extend an already existing, partial architecture. This step also
includes the possible integration of existing components (legacy or COTS) as well as
prototyping. The result is a (partial) architecture description and possibly a prototype.
During the application of scenarios, it is important to capture design decisions and
link them as well as architectural elements to scenarios to ensure traceability.

Product Line Aspects

During architecture development some variabilities might become apparent that are
not driven by the problem domain, but rather by the solution (e.g., two components
addressing the same problem, yet implementing differing algorithms). In this case, the
domain decision model is complemented by an architecture decision model. All open
decisions in both of these models have to be resolved for instantiation.3w

The following issues address possible customizations of this step. First, an
appropriate representation for the product line architecture has to be chosen, which is
a major problem, because mainstream notations (e.g., UML) and tools do not support
the description and instantiation of generic architectures. Furthermore, different parts
of the architecture might require different representations as described by Perry [8].

Hand in hand with choosing a representation goes choosing (creating) an
instantiation mechanism and process. This may even encompass the construction of
the necessary instantiation infrastructure (tools, etc.). By defining how instantiation is
performed, it is also determined how variability is actually implemented.

Finally, the extent to which prototyping is performed must be defined. As
illustrated earlier, a theoretical groundwork for evaluating reference architectures
based on models (descriptions) is almost not existing, which suggests that prototyping
is even more important than for one-of-a-kind architecture development.

2.5 Evaluate Architecture

In this step, the architecture resulting from the previous step is evaluated according to
the architecture evaluation plan. If the evaluation is successful (i.e., all tests are
passed), the architecture development continues with the next iteration or is finished
once the last group of scenarios has been applied. If, however, at least some test
failed, the process continues with step 2.6 “Analyze Problem”.

Product Line Aspects

Evaluation has to address instance-specific as well as family-specific aspects and
relies on a defined instantiation mechanism. First, the ease with which instances can
be created allows to draw conclusions on critical family-specific characteristics (i.e.,
usability, maintainability, etc.). Second, the range of possible instantiations is used to
ensure that the intended products are indeed covered by the reference architecture.
Third, instantiation yields variability-free architectures that can be evaluated in the
same way as one-of-a-kind ones. It is obvious that it is difficult to both get and
interpret.these results-without.relying-on-.a-prototype and on an automatic instantiation
mechanism.

Creating Product Line Architectures 215

A lot of instance-specific tests tend to be applicable for several or even all
instances. It is therefore sensible to use this process step as a starting point for the
construction of an infrastructure for testing and debugging architectures of product
family members as proposed by Balzer [1].

2.6 Analyze Problem

At least one of the tests for evaluating the current architecture failed. In this step, the
underlying problem is examined in order to determine how the architecture
development process can be continued. The examination focuses on whether the
current group of scenarios could be applied successfully to the architecture that
resulted from the previous iterations. If this is deemed to be the case, only the current
iteration needs to be reiterated. Otherwise, some design decisions from an earlier
iteration are presumed to impose constraints that are too stringent for the current set
of scenarios. Therefore, extended backtracking is needed, which may include
reformulating, regrouping, and reordering of some scenarios and then reentering the
process in the appropriate iteration.’

Product Line Aspects

The task of finding out whether a given, partial reference architecture is compatible
with a new set of requirements is significantly more difficult than to judge that for a
one-of-a-kind architecture. Ensuring that an addition does not break any of the
possible instances of the architecture is a highly complex task, especially when it
involves dealing with entities that could not be encapsulated properly. It is noteworthy
that this problem is not only relevant for architecture creation but also for
maintenance. We are not aware of any published guidelines on how this problem
should be addressed.

3 Summary and Future Work

In this paper we have presented the PuLSE-DSSA method, while discussing its
customizability and how it is to be applied for the creation and evaluation of product
line architectures. This discussion was used to highlight how methods supporting
product line architectures must deal with complexities non-existent in those for one-
of-a-kind software architectures.

PuLSE-DSSA presents the framework for most of our current research in software
architectures. Some of the issues we are currently working on include means of
representing product line architectures with their commonalities and variabilities; the
derivation of instance architectures from a given product line architecture; supporting
traceability between architectural elements and various other assets; and the
evaluation of product line architectures.

In some situations backtracking to the requirements definition phase (e.g., domain modeling) may be
necessary. This involves change management processes that are outside the scope of this paper but are
addressed within PuLSE.

216 J. Bayer, O. Flege, and C. Gacek

References

1. R. Balzer, “An Architectural Infrastructure for Product Families,” in Proceedings of the
Second International Workshop on Development and Evolution of Software
Architectures for Product Families, Lecture Notes in Computer Science 1429,
pp. 158-160, Springer, 1998

2. J. Bayer et al., “PuLSE: A Methodology to Develop Software Product Lines,” in
Symposium on Software Reusability’99 (SSR 99), pp. 122-131, May 1999

3. J.-M. DeBaud and K. Schmid, “A systematic approach to derive the scope of software
product lines,” in Proceedings of the 21st International Conference on Software
Engineering (ICSE 99), pp. 34-43, 1999

4. C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the Definition of Software
Architecture,” in Proceedings of the First International Workshop on Architectures
for Software Systems, D. Garlan (ed.), Seattle, WA, pp. 85-95, 24-25 April 1995

5. R. Kazman, G. Abowd, L. Bass, P. Clements, “Scenario-Based Analysis of Software
Architecture,” IEEE Software, vol. 13, no. 6, pp. 47-55, November 1996

6. R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, and S.G. Woods. “Experience with
Performing ArchitectureTradeoff Analysis,” in Proceedings of the 21st International
Conference on Software Engineering (ICSE 99), pp. 54-63, 1999

7. N. Medvidovic, “A Classification and Comparison Framework for Software Architecture
Description Languages”, Technical Report UCI-ICS-97-02, University of
California, Irvine, CA, Feb. 1997

8. D. Perry, “Generic Architecture Descriptions for Product Lines,” in Proceedings of the
Second International Workshop on Development and Evolution of Software
Architectures for Product Families, Lecture Notes in Computer Science 1429,
pp. 51-56, Springer, 1998

ol Ll Zyl_i}sl

Extending Commonality Analysis for Embedded
Control System Families

Alan Stephenson', Darren Buttle!, and John McDermid!

Department of Computer Science, University of York
Heslington, York YO10 5DD, UK
{alan.stephenson,darren.buttle, john.mcdermid}@cs.york.ac.uk

Abstract. Families of systems are prevalent in software engineering,
and many techniques are available for the analysis and implementation of
such families. Embedded systems families provide additional constraints
on these techniques, and safety-critical systems families constrain them
even further. An existing family analysis technique is combined with a
layering scheme to structure the selection of variations and the introduc-
tion of detail within those constraints. Application of this new technique
produces software which is specified and configured during development,
within a fixed execution architecture which reflects the common aspects
of systems within that family.

1 Introduction

Scope, Commonality, Variability (SCV) analysis has been proposed as an effec-
tive means of analysing a family of similar systems[2]. The analysis produces a
description of common system aspects, and of the variations that make each of
the family members unique. By undertaking such an analysis, an organisation
can better prepare itself for the evolution of the family product line as a whole.

In the embedded systems domain, families of systems have a number of pro-
perties which make a commonality analysis less straightforward. Firstly, an em-
bedded system operates within a larger engineering environment, and is typi-
cally developed concurrently with that environment. This situation involves two
families — the family of embedded systems, and the family of surrounding (em-
bedding) systems. Members of these families are integrated so fully with one
another, that the families are interdependent. A member of one of the families
cannot operate without a corresponding member of the other.

Additionally, many embedded systems carry real-time or safety-critical con-
straints. These concerns have many implications for the family development
process. The process must deal with the timing and safety analysis activities
that are used to justify the correct operation of the embedded system, and so
any embedded software system must be amenable to such analysis — often to
the satisfaction of the appropriate safety certification authority. The techniques
available for the implementation of a safety-critical embedded system are limi-
i i extend to the dynamic, object-oriented
in product lines.

pp. 217-224, 2000.

218 A. Stephenson, D. Buttle, and J. McDermid

One such embedded systems family is the family of engine control systems
developed by Rolls-Royce plc. The development of an engine controller to flight
standard is a costly process, and any reduction of these costs must be achieved
without compromising existing engine controller safety. Each controller is deve-
loped for a particular variant of a particular engine series. For some years, Rolls-
Royce ple. have supported a number of University Technology Centres (UTCs)
to work on key aspects of engine design and technology. A UTC in Systems
and Software Engineering was established in York in 1993. The work described
here is a central part of a programme intended to improve the engine controller
software engineering process by introducing a product family approach.

2 The Product Line

To serve as a focal point for this process, Lucent’s SCV analysis was considered.
It was evaluated with respect to the “sub-product line” of aero-engine thrust
reverser systems, and this analysis was successful in a number of ways:

— The amount of commonality between these systems was high, estimated at
around 80%.

— The identification of commonalities at a high level of abstraction would pro-
vide a good way of partitioning the system into components.

— Variabilities would sometimes prompt ideas about the way in which the
family could evolve in the near future.

Some difficulties were uncovered, though:

— The influence of externally-applied requirements on the variabilities was not
easily seen in the SCV scheme.

— The complexity of safety-critical systems such as the thrust reverser made
cross-referencing between commonalities and variabilities difficult to use.

— Safety analysis is difficult to apply without a clear separation of concerns

and responsibilities.

The separation of information according to domain issues did not become

clear until after a number of analysis iterations.

To address some of these concerns, ideas on layering, from the existing re-
search on the requirements engineering process within the UTC, and on re-
presentations of variations among requirements, from Napier University[4] were
integrated into a new commonality-based embedded systems family development
process.

2.1 Layering

Previous research at the University of York has advocated a layered software
i i Requi presented at the topmost layer are mapped

ce a new set of requirements for the
- A d I
-

Extending Commonality Analysis for Embedded Control System Families 219

next layer. This process is used to provide traceability between requirements and
design decisions, both for safety analysis and for product evolution.

The layering introduced into the commonality-based development process
operates in a similar fashion, but separates out externally-applied requirements
across all of the layers. This allows each layer to represent a uniform level of
abstraction, capturing the progress of development from a set of requirements
to a design which meets those requirements.

The designs within each layer are not necessarily software systems, however.
Around the embedded system, there is a larger concurrently-engineered environ-
ment with which the embedded system must operate. That environment is also
modelled within each layer, and the decisions made during its design affect the
way in which the software design can discharge its requirements. In principle,
the same is true in the other direction, although this flow of information is rarely
seen in practice.

Within each layer, therefore, there is a traceability between the externally-
applied requirements and the designs of the concurrently-engineered systems, of
which the software is but one. This design information is carried through into
the following layer, until a final design is reached — physical components in the
surrounding system, or software implementations in the embedded system.

2.2 Variability Notation

A structural notation has been derived directly from work carried out by Man-
nion and Keepence at Napier University[4]. Our interpretation of variation de-
pendencies is represented with variation operators, given in Table 1.

Table 1. Variation operators

Category Operator Description

Commonality ~ CO(Item) The item is selected in each instance of the fa-
mily.

Variability VO(Item) The item may or may not be selected for a par-
ticular instance of the family.

Parameter PO(Item) The item quantifies an aspect of the family.

Choice VCL(Items) The items are mutually exclusive. Exactly one of
them is selected for an instance of the family.

Selection VSL(Items) The items may be combined. At least one of them

is selected for an instance of the family.

In addition to these variation operators, tracing clauses show the require-
ments discharged by each design element, and derivation clauses show how items
in one layer relate to those in previous layers. Dependency clauses are added to

Ol Ll Zyl_i.lbl

ed for selection. These clauses can be
under a single variability, so that those

220 A. Stephenson, D. Buttle, and J. McDermid

commonalities are only common to instances where the variability is selected.
Equally, a number of commonalities and variabilities can be derived from a single
commonality at the previous level of abstraction. These two situations are ou-
tlined in Figure 1. The flexibility of these clauses is such that one variability
might only be considered for selection when another had been considered but
not selected, for example.

(a) | VO: Engine has pivoting (b)

door thrust reverser CO: Aircraft has engines

CO: Reverser has actuation
system

VO: Engine can provide
reverse thrust

l CO: Reverser has sensors l CO: Reverser has locks l l CO: Engine has a controller l PO: Number of Shafts: (1..3) l

Fig. 1. (a) Elements dependent on a variability. (b) Elements derived from a commo-
nality.

3 Building a New Process

By using both of these techniques together, a number of benefits can be seen,
some of which directly address the concerns outlined above:

— Things which are common at one level of abstraction can vary when more
detail is added. The layering helps to remove some of the complexity in
maintaining cross-referencing information.

— Domain-specific aspects surface when variabilities at the lower levels become
grouped under commonalities at higher levels. This grouping occurs as soon
as selection dependencies are considered, and can help the analyst to think
in terms of domain-specific abstractions.

— Requirements imposed on the project externally are separated from informa-
tion about concurrent designs, which shows how the requirements are being
met with more precision than a more conventional software development
scheme. This is beneficial for the safety analysis process, but also allows the
analyst to track changes in responsibility between the different concurrently-
engineered systems and the external customer.

4 Linking to Software Architecture

Each layer of the analysis will contain a number of concurrent designs, in different
disciplines. One of those disciplines is software engineering, and abstractions of
software designs are typically conveyed using software architecture. The software

design functionality to discrete design
- A d I
-

relevant nonfunctional properties. For

Extending Commonality Analysis for Embedded Control System Families 221

embedded systems families, timing, synchronisation and fault accommodation
are the major nonfunctional concerns.

A prototype domain-specific architectural style has been introduced in order
to deal with the representation of some of these nonfunctional properties. It ta-
kes some inspiration from the graphical notation of MASCOT][3,5], coupled with
the object classification scheme of HRT-HOOD(1]. Synchronisation of informa-
tion flows is represented using a modified dataflow scheme, allowing for various
patterns of synchronous and asynchronous interaction.

In most architectural styles, the transformation that adds detail to the spe-
cification is a straightforward refinement. In this scheme, however, conventional
refinements are made more difficult by the interactions between the embedded
system and its embedding environment, and the need to control that environ-
ment safely. It is necessary to appeal to safety analysis, timing analysis, and the
design of the embedding system whenever design decisions are being made. For
example, a safety analysis of the specification, even at a low level of detail, might
indicate that a watchdog timer is an appropriate safety measure. An interface
to the watchdog must therefore be added to the software, and additional timing
constraints might also be imposed.

5 Family-Based Architecture

The software architecture of a number of instances of a family of systems can
itself be analysed for its commonalities and variabilities, and stored as the soft-
ware design within the appropriate layers. However, to make better use of the
family-wide information base, a different approach is proposed.

Previously, it was noted that commonality analysis will usually identify do-
main concepts which represent the common elements of the domain at its highest
level of abstraction. This information can be used to suggest a decomposition of
software designs into architectural elements which also represent those common
elements. This structuring approach produces an architecture for the entire fa-
mily, rather than for an individual member of that family. Operating across the
family in this way has a number of distinct advantages:

— The same software architecture is present for each system within the domain.
Each one uses the same notations to represent the same organisation of
components, making it easy to understand the family.

— The design elements in each layer are organised according to commonality
and variability, as well as by relationship to previous layers. It is easy to see
how the architecture varies to support the variation within the domain.

— When a number of variabilities are derived from a commonality in a previous
layer, they are represented by a single architectural component. The effects
of these variations are localised to that architectural component.

— The architectural style specifies interfaces between components at all levels.
Changes within one component which do not violate that interface should
not propagate beyond that interface. This allows the component boundary
to act as a change containment boundary.

222 A. Stephenson, D. Buttle, and J. McDermid

— The analysis itself can be used as a partial justification for the structure of
the software, providing rationale based on the frequency of changes'.

With design information captured in this way, individual software imple-
mentations can be generated by selecting the appropriate architectural variants
through the successive layers. Deciding on, and creating, the appropriate vari-
ants becomes the major engineering task in the development and evolution of
the system. While the creation of the software itself is firmly in the hands of
the software engineer, the selection of variants can be traced from selections
made among the family of embedding systems, and the family of requirements
for those systems.

Once the software has been selected and built for a particular member of
the embedding systems family, its structure is fixed — nothing is allocated or
deallocated during execution. To reconfigure the software, it must be reselec-
ted from within the family and rebuilt. This provides a flexible family-based
approach, but also enables the use of static analysis techniques which a more
flexible implementation would prohibit.

6 Further Research

We are currently investigating the use of this process through an extensive de-
monstrator programme, in conjunction with Rolls-Royce plc. This programme
aims to show that a product family development strategy will significantly re-
duce development costs within that family, by developing representative software
systems for a subset of the engine controller family.

The first part of the demonstrator programme includes the commonality
analysis, and provides the product family’s domain-specific architecture. In the
second part of the programme, one family member is developed, and then mo-
dified to produce another family member. It is expected that the links between
commonalities and variabilities will provide most of the software elements, and
will, for example, allow the rapid identification of requirements for which no
software elements yet exist.

To fully support this programme, however, there are still a number of issues
to be addressed:

Implementation Structure There should be a systematic mapping between
the lowest level of architectural design, and the implementation. The fle-
xibility of the architectural style must be transformed into software, while
honouring the restrictions imposed by static analysis.

Change Impact If the scope of the family changes, so that changes are being

made which were not represented in the analysis, then the architectural

elements may no longer provide change impact boundaries. Conventional
change impact analysis would be used to assess this situation, but it must
be extended to cater for the impact of, for example, requirements changes
or technology changes.

e, existing rationale

Extending Commonality Analysis for Embedded Control System Families 223

The Ragged Domain Similarly, the responsibility for the provision of func-
tionality can change from one family member to another. This forces design
elements to migrate between concurrently-engineered systems, or even into
and out of the embedded systems development itself. Any change impact
strategy must cope with this phenomenon.

Database Support Information must be stored about the whole family of sy-
stems, with explicit indication of dependencies and variations, and in multi-
ple artefacts. Individual instances of this information must be retrieved and
validated to ensure that the links are representative of the dependencies bet-
ween artefacts. The information storage tools must be able to support these
linking and validation processes.

Family Evolution The family as a whole will evolve. As its members evolve,
new members are added, and old members are retired. However, engine sy-
stems can remain in service for thirty years or more; While the mechanisms
which control the evolution of the family must allow for these evolutionary
paths, they must also cater for legacy family members.

7 Summary

We have derived a family-based embedded systems development scheme which
reflects the commonality and variability among the family members, from exi-
sting research in the field. A domain-specific architectural style has been added
in order to introduce the representation of appropriate non-functional properties
at high levels of abstraction. These methods are being used in a large case study
in collaboration with Rolls-Royce plc., to determine their effectiveness in the
engine controller domain.

Acknowledgements. Much of the work presented in this paper has been con-
ducted in cooperation with Rolls-Royce plc., under the EPSRC-funded CON-
VERSE (GR/L42872) project. CONVERSE is a part of the Systems Enginee-
ring for Business Process Change (SEBPC) managed research programme. We
would like to express our thanks to the EPSRC for funding this research.

Rolls-Royce ple. supports a number of University Technology Centres
(UTCs), with which they conduct research into key aspects of engine develop-
ment and design. A UTC in Systems and Software Engineering was founded in
York in 1993, and is currently working to support the case study work presented
in this paper.

References

[1] A. Burns and A. Wellings. Hard Real-Time HOOD: A Structured Design Method
for Hard Real- sze Ada Systems Elsev1er 1995.

ommonality and Variability in Software

5, November 1998.

224 A. Stephenson, D. Buttle, and J. McDermid

[3] JIMCOM. The Official Handbook of MASCOT. Technical report, Joint IECCA
MUF (MASCOT User’s Forum) Committee, June 1987.

[4] Mike Mannion, Barry Keepence, Hermann Kaindl, et al. Reusing Single System
Requirements from Application Family Requirements. In Proceedings of the 21st
International Conference of Software Engineering, pages 453-463, May 1999.

[5] H. R. Simpson. The MASCOT Method. Software Engineering Journal, 1(3):103—
120, 1986.

[6] A. Vickers, P. Tongue, and J. Smith. Complexity and its Management in Requi-
rements Engineering. INCOSE UK Annual Symposium — Getting to Grips with
Complexity, Coventry, UK, 1996.

ol 4 JI_I.LI

Stakeholder-Centric Assessment
of Product Family Architecture

Practical Guidelines for Information System Interoperability
and Extensibility

Tom Dolan"?, Ruud Weterings', and Prof. J.C. Wortmann®

! Philips Medical Systems Nederland BV, PO Box 10.000, 5680 DA Best, The Netherlands
2 Technical University, Department Information and Technology, PO Box 513, 5600 MB,
Eindhoven, The Netherlands
tom.dolan@philips.com, ruud.weterings@philips.com

Abstract: This paper presents a method for software product family
teams to assess their family architecture with respect to family-relevant
system-qualities. The method extends current architecture assessment
practice through its explicit orientation to family-issues; its emphasis on
those family-stakeholders neglected by conventional development
methods; and its focus on providing practical “how-to” guidelines and
mechanisms to enable method-users to successfully complete the
required activities. Initial design and implementation of the method
addresses the important system-qualities of interoperability and
extensibility. The paper has a practical orientation, and concentrates on
illustrating research results using industry-based examples from case-
studies where the method was applied in the ongoing architecture
development of commercial medical information system product
families.

Introduction

Product! families and their associated product family architectures are created and
maintained by collaborating, multi-disciplined teams. Such teams are the most
effective place to instil the demand-for, and practice-of architecture assessments as a
means to improve and sustain architectural quality. The most established architecture
assessment method is the SAAM, and its successor ATAM, from the Software
Engineering Institute (SEI) - which describes a general process for third-party (to the
development team) driven architecture assessment. SAAM has been extensively
reported, especially in its application to the system-qualities of modifiability,
performance, portability.

This paper aims to contribute to the increased adoption and effectiveness of
SAAM-based architecture assessment in the industrial community by:
e providing an initial toolkit of "how-fo" techniques to enable development teams

(themselves) to complete the various activities and artifacts prescribed by SAAM;

! Throughout this paper - the "product families" in question are information system families.

F. van der Linden (Ed.): TW-SAPE-3, LNCS'1951, pp. 225-243, 2000.
© Springer-Verlag Berlin Heidelberg 2000

226 T. Dolan, R. Weterings, and J.C. Wortmann

e incorporating the family-concept into the method - in particular seeking to apply
architecture assessment to the key product-family qualities of interoperability and
extensibility.

The ideas will be presented in the context of a SAAM-like method developed through
industrial experience with product family creation and maintenance in the medical
information system domain. The focus of this workshop paper is on highlighting the
practical-aspects of the method by describing some of the toolkit of techniques to help
the assessment team complete the activities in the method, particularly those related to
specifying and communicating stakeholder requirements.

Architecture Assessment in Product Families

The benefits of a product family approach to software development are widely
accepted in the mainstream software industry [1]. The need to manage variety and
commonality (or flexibility and reuse) across family members has long been
recognised [2] as a fundamental aspect of this approach. Another important aspect of
product family development which has received most interest from the “product line”
research effort at the SEI [3], and by the work of Ron Sanchez in “strategic product
design” [4], is the long-term, strategic issues relating to the leveraging of current
product design investments across other family members and indeed future
generations of the family.

This future-proof aspect of families means that yet-to-happen changes to family
members and/or the application domain must be supported by the product. The
situation is exacerbated in the information systems industry where products will
contain large amounts of customisation; even after installation as customers use
standard technology to provide independent enhancements, which must be sustained
throughout family-evolution.

The ability of software system families to provide the flexibility needed to
accommodate the various changes they undergo during their life-cycles is heavily
influenced by the system-qualities [S] (also termed “emergent properties” [6]) such as:
extensibility, interoperability, reusability, scalability, portability. These qualities are
all key competitive aspects of information system family business.

Architecture has been widely cited as an integral part of successful family
development [7]. The architecture contains the earliest, most important, and most
long-lasting system decisions. These decisions guide development and have a
determining influence? on the family-critical system qualities mentioned previously.
In addition to determining system qualities - the architecture is also used as forum for
shared understanding, consensus and communication among the family development
team, and is the earliest point in the system life-cycle when the system can be
analysed [1] to answer "what-if?" questions. This latter point has encouraged the
assessment of architecture as a means to ensure that early-design is aligned with
strategic family objectives. The collaborative, interactive nature of family-
development, coupled with its strategic importance for the business means that
architecture-based communication and assessment should be firmly embedded in the
family-development team.

2 It is important to understand, however, that while a good architecture is necessary to ensure
qualitysritsissnotssufficient;asvinferiorsdownstream design and implementation can always
compromise architectural design [1].

Stakeholder-Centric Assessment of Product Family Architecture 227

Product Family Challenges for Architecture Assessment

A product family is defined here as: a collection of closely-related products (family-
members), treated as a cohesive entity by stakeholders in order to leverage similarity
and co-ordinate variety, both within a specific generation of the products and across
generations.

Deciding which products are related and why is at the stakeholders combined
discretion — but the dominating factors are the similarity of the application domain
addressed by the individual products (market-oriented) and the similarity of the
technological resources used to develop the products (development-oriented).
Families are typically manifested in one or more combinations of the following
situations [7]:

e a suite of applications which work together to satisfy related business-processes

e.g. MS office, banking systems software;

e asingle application which comes in variants e.g. Ericsson AXE switching system -
with different variants per country and per size (e.g. small, medium, large);
e independent applications built from a common component base e.g. MS

Foundation Classes.

In practice families are rarely "green-field" developments — especially in the
application suite approach - previous single-product efforts have established the
market and experience necessary to initiate a family approach. This in turn means that
existing separate-systems must be grafted (sometimes with force!) together to realise
the future family, and also that an installed-base exists which demands migration into
the family-concept. The fact that product family definition straddles both the past and
the future, for multiple, (loosely-)associated products adds to the complexity of the
family-management function.

The importance of system-qualities for product family development, and the need
for a long-term, multi-product business vision from stakeholders also introduces
challenges at the tactical and operational levels of software development. The bulk of
effort in development methodologies and tools, however, has focused on non-family,
functionality-driven products, processes and stakeholders [8]. Family stakeholders,
therefore, are not well supported with practical development processes and tools
necessary for family development.

Providing support in this area is the central topic of this paper. In particular, those
family-stakeholders concerned with developing families as a suite of co-operating
applications need support engaging in explicit communication of requirements
concerning the important qualities of interoperability and extensibility with architects.
The suite-approach is one of the most common and natural strategies among
established firms in defining a family; and these qualities are essential in ensuring the
smooth interaction and continuity between the various family-members expected by
the market.

The SAAM Architecture Assessment

Arguably the most popular architecture assessment method is the SAAM/ATAM
method. This method is officially backed by the SEI as an integral part of their
developing Software Architecture Initiative strategy [3]. In addition to being non-
proprietary, the method is undergoing active extension and adoption by third-party

228 T. Dolan, R. Weterings, and J.C. Wortmann

researchers. It is therefore likely that the method will become widespread and perhaps
eventually standardised by the SEI. The main steps in the method are presented in
Figure 1 below.

The SAAM (Software Architecture Analysis Method) [8] is a stakeholder-centred,
use-case based assessment method intended to analyse architectures with respect to
various non-functional system-qualities. SAAM has been described and reported on
extensively ([9], [5], [10]). The continuing progress and penetration of SAAM makes
it a solid basis on which to found ongoing assessment improvement - such
improvements are addressed in the method proposed in this paper.

iterate
IDescribe candidate architecture F—’I Develop scenarios I

Evaluate each scenario

Weigh scenarios and
scenario interactions

Reveal scenario interaction

Figure 1. overview of the SAAM method

SAAM - Extension Opportunities for Family Development

The assessment method presented herein draws much from SAAM; and aims to
extend it in some important directions relevant to product family development. In
particular the following aspects of SAAM provide opportunities for enhancement:

e SAAM, is not particularly focused on families of systems (although does not
exclude them), and most reported experience is on single-system architectures, and
addresses the roles of operational-stakeholders from the user or development
communities. SAAM has also focused on a subset of the important system qualities
viz. security, adaptability, portability. Experience of family-oriented assessment,
particularly in relation to other qualities (interoperability, extensibility) is a useful
contribution to the general architecture assessment experience-base.

e SAAM needs use-cases to be generated (step 2 of the method) — but does not
provide any guidelines as to how they might be identified, generated, represented —
this is particularly important for system-qualities as there is no broad
experience/method base from which the stakeholder can draw upon. Providing
guidelines and techniques in this area contributes towards increasing the
adoption/usability of the method in industry.

e SAAM was originally intended to compare candidate architectures — but is also
very applicable towards establishing increased stakeholder understanding of a
single architecture. It can be used early in the requirements analysis phase of
development to assess the impact of requirements (so-called "discovery-reviews"
as described in [10]) therefore providing a valuable tool in requirements
negotiation and in family definition. This more intensive stakeholder involvement
is particularly appealing for product family architectures.

Stakeholder-Centric Assessment of Product Family Architecture 229

The argument here is that internally-driven assessments can be used in addition to the

external-oriented assessments typified by SAAM, and are necessary in order to embed

architecture-based development in the organisation in the context of incremental
architectural quality improvement. Further, these assessments can be used to provide
useful material for the more formal external assessments, thus making these latter
assessments more efficient by allocating the preparation-tasks to the development
team, and letting the external assessors concentrate on assessment tasks.

The research contribution reported here aims to build on the SAAM and extend it
with:

e a focus on the family-development-team helping itself as regards assuring the
quality of the family architecture, rather than depending exclusively on external
architecture consultants to police the process;

e practical tools/tips and processes to support more formalised stakeholder-architect
interaction in "how-to" implement the assessment; especially as regards
requirements identification, specification and architecture communication.

The overall approach to this product-family and "quality-specific" extension to the
basic SAAM method is summarised in the Figure 2 below. It recognises that useful
advice regarding implementation of quality assessment is dependent on the
application domain and the particular qualities involved. The approach here is to
develop domain and quality “add-ons” (see middle-, and top-layer of Figure 2) which
integrate with the general process and extend it to provide practical tools/techniques?
to fulfil the steps. The extensions described focus on:

o tailoring the general process for the domain of information system families;

e adding practical tools to support participants in generating the necessary process
artifacts for the qualities of interoperability and extensibility in the domain.

how
add-ons | S Family adapt or

what I: general assessment process [SAAM/ ATAM]

Figure 2. add-on based architecture-assessment improvement approach

These are initial steps on the road to providing a comprehensive set of domain-,
and quality-specific architecture assessment tools. The long-term aim is that through
increased industrial and academic exposure in these (interoperability and extensibility
for IS families) and other domains/qualities; those domain-/quality-specific parts will
mature to plug-in library process-components on top of a general assessment method.
This depends heavily on adoption and experience-reporting by the practising
community.

3 These tools comprise a set standard-questions, templates, process-techniques which, after
repeated-exposuresand-refinementywill-evelvesinto a good-practice process handbook; similar
to those in use in more mature industries e.g. chemical, building.

230 T. Dolan, R. Weterings, and J.C. Wortmann

As extensions are provided by others (dashed-add-ons in Figure 2) — new
possibilities for combining domain-extensions may emerge, and as the general
understanding of the system-qualities increases, it may be possible to derive domain-
independent tools.

An assessment method addressing these concerns is presented in the next section,
illustrating usage of the tools with reference to industry-based interoperability and
extensibility issues in medical information system families.

Method: Family and Quality Oriented Implementation Tools

This section briefly presents the overall design of the assessment method (see Figure
3). The process steps are motivated by SAAM [9], SEI report on architecture
assessment best practice [10], ATAM [11]. Due to space-constraints, detailed
description of the process steps (roles, inputs, outputs) is not described here, but are
fully reported in a pending PhD thesis by one of the authors; a graphical example of
the process description for step 1 is included for illustration only. The focus of this
workshop-paper is on describing the extensions developed to support the application
of the method to information system families and the qualities of interoperability and
extensibility. Most attention will be devoted to describing the toolkit of techniques
and tips developed to help stakeholders and architects explicitly communicate family
quality requirements, especially in the setup and information-gathering phases of the
method.

setup Define mapagement
assessment
information Pfepafel Prepare
: system-quality .
gathering requirements archnecture Facilitate

architecture

iterate

assessment

analysis Review/ refine
artifacts

awiy,

Assess
architecture
conf ormance

corjclusion Repeat for later Report
v re-architecting results &
e —_ — proposals

Figure 3. Family Architecture Assessment Method - Overview

Define Assessment

Goal: to define the agreed scope and intention of the assessment with the family
al-assessment .

Stakeholder-Centric Assessment of Product Family Architecture 231

Toolkit/Tips

e Seek to identify two to five clear goals related to system-quality (i.e. in this
research interoperability, extensibility) for the assessment - do not try to
determine if the development project will meet all targets;

e Establish whether the focus is requirements-discussion “architecture discovery”
type review; or a formal “architecture evaluation” against a fixed set of
requirements - (see [10]);

e Establish the purpose and audience of the assessment report and what will be
done with it - it is important to get management commitment and participant
understanding that the evaluation is improvement-oriented and not the basis of
stakeholder/architect performance-appraisal;

e Participants:

— the four primary family stakeholders are typically [8]: family business manager,
product manager, customer support manager, and development manager; or their
representatives;

— The architect (or architecture team);

— The assessment facilitator (to guide the assessment);

— Application domain expert (to provide consultancy on application domain;

— External architecture expertise (optional) usual for a more formal evaluation;

— Administrative/logistical support (optional).

e Identify the stakeholders and indicate their roles, interests and associated
assessment documents;

e Gather available requirements documentation related to the system-qualities
under consideration;

e Use the change-case-guidelines, family-feature-map, system-topology and
migration-map to identify candidate change-cases for interoperability and
extensibility;

e Get an architecture description(s) - indicating computation and data components,
and all component relationships (connectors) [SAAM-method step 1];

e Typically for family-related issues the conceptual and deployment views from the
4+1 model [12] are important;

Sample Process Overview

Figure 4 below shows a sample graphical representation of the process description developed in
the research. Such representations summarise the detailed activities associated with each step in
the method; emphasising the: nature (group/individual) of the step, participants involved,
sequence of activities, the tools used, and the inputs (left-side) and outputs (right-side).

Prepare System-Quality Requirements

Goal: to establish a pre-assessment idea of the overall status of the requirements with
respect to the assessment goals and identify/specify the change-cases with the
stakeholders.

232 T. Dolan, R. Weterings, and J.C. Wortmann

Def ine assessment

establish compose
sponsor goals/scope team

f acilit at or

specify required
input & plan

migr ation-map Change-case-

guidelines documents - identify agree go/no-go
P 4§ change-cases

f amily-f eat ure-map

survey existing

Figure 4. Example of graphical process description for method step

Toolkit/Tips

e Establish a definition of the family - if it does not exist. The family-feature-map
concept described in section 0; provides a useful overview vehicle to help elicit
the context, scope and variability within the family.

o Use the change-case guidelines to concentrate the stakeholders effort on the most
important 5 - 7 change-cases to be dealt with per assessment cycle.

e Specification of change-cases for interoperability and extensibility is typically
text-based and is structured for assessment use by a change-case template
structure as presented in section 0.

e Rank the change-cases in order of priority with the stakeholders as a group using
general ranking criteria.

A Note on '"Change-Cases"

The term change-case (see [13], pp63) is used to describe those candidate changes
that must be accommodated by the system. They play the same role in representing
requirements for the “build-time” aspects of a system, as the use-cases play in
describing the functional requirements associated with the “run-time” operation of the
system. The new term distinguishes these two aspects of the system life-cycle, and
emphasises the fact that change-cases specifically deal with issues of most interest to
the system producer in particular the future modifications to the system and the
system’s relationship with others - which are critical in family-definition.

Prepare Architecture

Goal: to establish a pre-assessment idea of the overall status of the architecture with
respect to the assessment goals and identify/specify the representations, rationale
necessary for the assessment

Stakeholder-Centric Assessment of Product Family Architecture 233

Toolkit/Tips:

Describe the architecture using existing representations in the organisation with
an emphasis on the computational components, data components and their
relationships. Existing views shall be embellished (where needed) with the
information defined in Kruchten’s 4+1 views [12].

Typically for the chosen system-quality issues in information-system families the
following views have proven most useful:

logical view (information model) — static issues

deployment view (software modules in development organisation) — static issues
process view (e.g. UML Interaction diagram) - dynamic issues

use-case view (illustrate, in stakeholder terms, how the elements work together) —
dynamic issues

Provide evolving change-cases to architect so that the architecture representation
is driven by requirements.

The architect should also indicate which changes-cases are related to which views
— this is useful to prioritise architecture views.

The precise views, their granularity, and completeness is the responsibility of the
assessment-team* — if the stakeholders are satisfied then it’s sufficient. The
approach in this method is that it enables professionals to carry out an
assessment; the assessment-team is responsible for its own actions. Of course
downstream development will have higher expectations of architecture
completeness, but that is outside the scope of this assessment method.

In steps 2 and 3 above there is typically (facilitated) interaction, but not architecture
assessment between the stakeholders and architect.

Review/Refine Artifacts

Goal: to review the material gathered in the specification-phase and to develop a
technical and organisational assessment-execution plan.

Toolkit/Tips:

Verify that the basic requirements/architecture specifications/views are available
— check against change-case template 4+1.

Use general assessment requirements ranking criteria to establish priority of
requirements. Sample change-case-guidelines for specific
interoperability/extensibility qualities can be used to further refine the ranking -
so that the most important change-cases are carried further.

Related (in the domain or architecture) and/or conflicting change-cases are
particularly important and their dependence should be reflected in the ranking and
criteria setting.

4eMorepfocusedmguidelinespiowardspidentifying the appropriate architectural views and

granularity shall be developed with increased exposure to ongoing industrial application

234 T. Dolan, R. Weterings, and J.C. Wortmann

Assess Architecture Conformance

Goal: To assess the conformance of the architecture to the quality-requirements as
specified by the stakeholders.

Toolkit/Tips:

e The assessment criteria may be used to structure the discussion and offer
opportunities for brainstorming, creative dialogue towards compromise

e Architect uses functional use-cases or direct (no modification needed in
architecture - see SAAM) change-cases to explain architecture and show how it
supports requirements.

e For indirect (modification needed to architecture) change-cases - the various
possibilities and costs of changes must be discussed with stakeholders [SAAM
method step 3]. This is the discourse intended to help architect and stakeholders
have a structured exchange on architectural/requirements issues and to come to a
shared understanding of issues and (later) solutions.

e A tabular overview (requirement-architecture interaction matrix) listing
change-cases, affected components and associated costs (including negative side-
effects) is useful here for overview [SAAM method step 4], and to illustrate the
mapping between requirements and architectural domains.

e Architectural elements which are affected by un-related change-cases (trade-off|
points in ATAM) may indicate a weak separation of concerns (this may be
expressed in an interaction metric totalling the change-cases related to each
component. It may just indicate a very important component — again individual
context is determining here.

e Overall evaluation - weigh each indirect use-case and the use-case/component
interaction metric in terms of their relative importance. This process is used to
establish the overall performance of the architecture, and should be done by all
affected stakeholders to achieve consensus. [SAAM method step 5]. The pre-
defined assessment criteria is useful here.

e The issues, scores, important discoveries raised during the review should be
recorded in minute-form by the facilitator (or appropriate administrative support)
in the assessment-log of the assessment and is will be input to the official
conformance statement.

Report Results and Proposals

Goal: To document and report the assessment results to participants and other
concerned parties; and to establish a baseline for follow-up assessment or
architecture/requirements rework.

Stakeholder-Centric Assessment of Product Family Architecture 235

Toolkit/Tips:

e A summary of the architecture’s accommodation of the required
interoperability/extensibility shall be provided by a conformance statement.
This shall be provided by the facilitator (with the co-operation of the architect)
and is intended to communicate the assessment findings to the stakeholders and
management. The requirements-architecture interaction matrix discovered
during the assessment-meeting will be important here in illustrating any system
quality limitations of the architecture.

e The weighted use-cases and interactions should be used as the basis of planning
any re-architecting activities in order to improve architectural support for the
indirect use-cases. Re-architecting should only be considered in conjunction with
stakeholder feedback. Important in analysing any changes is that they do not
adversely affect any direct change-cases or other system functions/qualities - this
is the architects responsibility.

e A set of proposals - including repeat assessments (see dashed-arrow in Figure 3)
for modified/ignored requirements or architecture elements - should be proposed
with rationale and risk-assesment for incorporation into ongoing family-planning
discussions with stakeholders.

Facilitate Architecture Assessment

Goal: To co-ordinate the participants and ensure locations, materials necessary for

efficient working. The facilitator also provides support in explaining, guiding and

reporting the method.

Toolkit/Tips:

e Ensure organisation management supports process and receives assessment report

e Provide example-based introduction to method and ensure buy-in from team
before starting

An overview of individual tools and their traceability to the above process steps is
provided in the following section

Assessment Method Tools

This section describes a representative-subset (shaded grey in Table 1)of the most
important "how-to" techniques borrowed/developed to aid method implementation, as
presented above. These represent the initial contributions of the research towards
extending SAAM and assisting stakeholders to provide the artifacts necessary for
architecture assessment. Techniques will be illustrated with material from a number
of industrial case-studies from the medical information systems domain, where the
method is undergoing industrial-trials.

236 T. Dolan, R. Weterings, and J.C. Wortmann

In order to protect confidential information and to make the material accessible,
simplification and alteration of details has occurred.

Table 1. Overview of technique usage in method steps

Tools\Method-steps Define, Req. | Arch | Review |Assess| Report Mgt.

Family-Feature-map v v v v v
System-topology v v v v v
Change-case-template v v
Migration-map v v v v v
Change-case-guidelines v v v v
Requirements ranking criteria v v v v
4+1 v v v v v
Assessment criteria v v v v
Reg-arch interaction matrix v v
Interaction metric v v
Conformance statement v

Family-Feature-Map

Definition

The family-feature-map is a tabular structure listing which features are contained in
which family-members (variants). Further it indicates whether these (mainly
functional) features are a core part of the variant (i.e. always present/enabled, and
standard included in the variant); or whether they are optional (can be enabled
depending on customer configuration). This can be developed using e.g. domain
modelling, or the commonality analysis techniques advocated by [2].

Role in Assessment

e This is a concrete definition of the family in business/application-terms, and
provides participants the vocabulary with which to discuss the commonality,
variability, boundaries and internals of the family members.

e Practical experience shows that the exercise of defining the family-feature-map
will stimulate the stakeholders to consider and generate change-cases.

e The absence of (or ability to generate) this artifact is an early-warning that the
family is not well established - a meaningful (i.e. realistic) family-architecture
cannot exist without a solid business-case for the family as reflected in the
Jfamily-feature-map.

Who

Typically the family business manager is the stakeholder primarily responsible for
defining the content of the family in response to application and market requirements.
Other family stakeholders and (even) the architects may be involved as part of the
collaborative family definition process. Individual product managers (commercially
responsible for individual variants) use the family-function-map to co-ordinate their
activities and limit their area of responsibilities in subsequent roll-out of the members.

Stakeholder-Centric Assessment of Product Family Architecture 237

Example
Medical IS Family-members

Features Entry Standard | Enterprise

Pat-reg (6] C

Request-reg C C C

Appt.-sched. C C C

Exam-admin (0] (0] C

WLH C C C

reporting (0] (0] C

Mgt.-reporting | - - C

Review-prep - C (0]

viewing (¢} C o

Archive-mgt-F (0] (6] C C - common feature
Archive-mgt-D - C 0) O - optional feature

Figure 5: Sample family-function-map showing core/optional function-elements in each of
3 family-members

Limitations

The family-map does not show the variability within a particular functional element
e.g. the different types of viewing functions supported (but this could be remedied by
simply increasing the amount of detail shown). It also does not show dependencies
(either commercial or technical) between optional-functions. Such additional detail
can prove necessary in the assessment — this is typically indicated by the architect in
the iteration between the architecture- and requirements-preparation steps in the
method.

In other domains familiar to the authors, architectures are (in some cases
beneficially) over-designed to satisfy all-combinations of features - thus allowing un-
planned feature configurations in the future. While this is good-architecting
(accommodating the unknown) it should not be an excuse to ignore stable domain-
commonality and not to consider leveraging this in design. Encouraging (forcing!)
commercial stakeholders to make informed choices based on domain realities is good-
practice even if later the architect will not "boiler-plate" all aspects into his design.

System Topology

Definition
The system-topology is a simple graphical-overview of the various
systems/components which are (or can-be) present with the family in its operating
environment.
Role
The system-topology is used primarily as a means to:
e provide a real-life product-based representation of the current family content
and boundary in its application context
e a means to provide insight on the actual and candidate systems that interoperate
with the family

238 T. Dolan, R. Weterings, and J.C. Wortmann

e a means to indicate possible systems which could be incorporated/replaced by
the family thus extending the family-scope.

e Act as a means to encourage stakeholder thinking on interoperability
requirements by describing the candidate "actors"; and on extensibility
opportunities by highlighting associated applications in the domain. This
prompts stakeholders to generate interoperability and extensibility change-cases.

Who

Typically the product manager and/or the architect provide the context in which the
family or individual products therein operate.

Example

The example in Figure 6 below illustrates the various internal (based on the suite-
concept of family indicated in section 0) and external components that provide the
application context for the PACS (Picture Archiving and Communication System)
image management system. The ultrasound modality highlighted as a variant of
external system in the figure will be referred to later in this section when illustrating
an example interoperability change-case.

ultrasound-modality
—

— — —
I Clinical
modality | modality | Film Scanner Workstation
Workstation

| —|_ I Network (10 or 100 Mb/s) |

3rd- party workstation

T
long-term storage PACS server PACS Workstation 1

PACS

RIS Server/gateway

Example of a PACS component configuration (system topolopgy)

Figure 6. Sample system topology showing the internal and external components required
to interoperate in the (PACS) family application domain

Limitations

The system-topology provides a static view of the systems in the application domain,
it contains no information as to how interaction occurs dynamically, or specifies
data/control interfaces. In early-design architecture assessments this is not a limiting
factor, for stakeholders - architects typically will need such information to have a
convincing story at assessment-time.

Migration-Map

Definition

The migration-map is a simple graphic illustrating the various members of the
proposed family and their ancestors and planned-descendants over time. This tool
captures the past/future aspects of family indicated as a challenge in section O -
analogous to a family-tree in genealogy.

Stakeholder-Centric Assessment of Product Family Architecture 239

Role
The migration-map sets out the roadmap for the family - it is especially useful in
encouraging business stakeholders to make the following important (especially for
information system families) decisions regarding family continuity and extensibility
explicit:

e What legacy systems must we migrate from and which (new) members are

affected
e What level/type of migration is required above - examples
e What individual family-members are contained in the family and how/which
members do we offer customers the ability to move/extend to within the family

Further it provides motivation for stakeholders and architects to pre-empt the risks
and issues associated with legacy migration in the family - a very major issue in
information systems community.
Who
Typically the family business manager, customer support manager are responsible
for defining the bridge between past and future to be supported by the family. The
development manager/architect also plays a leading role here because of the need to
account for the costs of technical discontinuities associated with trying to please all
the existing-customers and all the future-customers. This is typically an area where
commercial wishes and technical limits conflict - it is vital that the discussion is
clarified early in the family’s life - thus increasing the chances of business and
technical alignment.
Example
The example below is based on a ficticious product family (RIIMS) which integrates
previously separate information- and image-management systems. Without going into
many details - the main point is that the stakeholders have indicated which members
belong in which market segments (entry, standard, enterprise); which legacy
migrations must be supported - and therefore which not (e.g. legacy-RIS to RIIMS but
not to Basic RIIMS). The diagram also captures the strategy which dictates which
upgrades/extensions within the proposed family the producer will support - in many
cases this is strongly motivated by the technical differences foreseen between entry-
level and enterprise systems, and provides a means to optimise revenue-streams by
forcing customers to follow a planned-path of expenditure, and reducing the amount
of technical-gap between extensions.

Enterprise
RIIMS

legacy PACS
+legacy RIS

Enterprise

~
Standard
5 RIIMS
BasnfRIlgIMS > e full RIIMS
+ rem. scheduling) \
. | Cluster Basic RIIMS /
Entry (no RIS) (Info. Mgt.) growth in time

Figure,7s,Sample;migration-map,showingthe,existing and planned family-members and the
required migration/extension between them

240 T. Dolan, R. Weterings, and J.C. Wortmann

Limitations

The migration-map does not show the variability within a particular member e.g. the
features supported - but this can be derived from the appropriate family-feature-map.
It forces technical considerations to the business-level - but there is no guarantee (as
with other tools) that things may not change.

Change-Case Template

Definition

The change cases are the primary means to represent requirements in the method, and

the template is used to structure the change-case. The template provided by the

method will be described below with an example

Role

The template aids the stakeholder in expressing interoperability/extensibility

requirements in a form suitable for assessment.

Who

The stakeholder uses the template to specify the change-cases and the architect uses

it to extract relevant information.

Template

Change-case Name: Name of change-case and associated system-quality.

Goal: the intention of the change-case.

Actor: the stakeholders (person/other-system) affected by the change.

Trigger: The stimulus for the change (i.e. who, what initiates the change).

Brief Description: a brief description of the stakeholder-system interaction that arises

as a result of the change of the change.

Rationale: Short description of the business case (preferable with reference to

requirements, strategy documents) motivating the change — if different from “trigger”.

System-quality Context: This is context in which the change-case occurs. The

environment both in terms of the system (the family-member) and its surroundings

should be described as much as relevant. In particular:

e System topology (i.e. relationship with other systems, users)

e System settings (any special configurations, the particular family-members
involved)

e Pre-conditions (necessary resources or conditions needed before the change can
occur)

System-quality Details: Any more detailed system behaviour required to support the

behaviour.

End note: any notable conditions, circumstances for the system stakeholder after the

case has been implemented. In particular if any other change-cases are affected

(triggered

Stakeholder-Centric Assessment of Product Family Architecture 241

Example - This is an interoperability example based on the system topology diagram
reviously

Change Case # 1
Provide handling of UltraSound(US) Images and Measurement data by brand-X PACS

Actor: UltraSound Modality

Trigger: US Images and related measurement data from the US modality — they shall be
accommodated

Rationale:

More and more US modality vendors are confronted with (users) requirements to offer PACS based
solutions in their product portfolio, optimized for US (color) images and other measurement data. There a
two business opportunities for the brand-X PACS in this domain;

- a dedicated US Image Server/Archive for the (larger) UltraSound lab

. a versatile Radiology PACS, supporting multi-modality imaging devices; CT, MR, XA, US.

Brief Description:

Brand-X PACS (hereafter called the PACS system) should be able to receive, store, process and display
(color) image data and related measurements (results) from the US modalities.US studies may consist of
US (color) images, both single frame and multiple frame series. These images are transferred in a
lossless of lossy (RLE) type of compression mode, dependant of the type of study, and may be
accompanied with US measurement results, as well as ECG (curve) data.

The PACS system should be able to handle and display these (color) images and measurements, so that
the (primary) user of the system can review and manipulate these images on the systems (diagnostic)
viewstation. Dedicated US practitioners may want to use a color-based viewstations and combine these
images with other type of examinations (e.g. CT or MR); other radiologist may want to use their high-
resolution (B/W) diagnostic viewstation instead.

In addition, US examiners may want to review the dynamic behavior of the US (multiple frame) images
in a ‘cine’ loop type display; simultaneously looking at the moving ECG (curve).

Interoperability Context:

The system shall support US images according the DICOM standard; both single frame and multiple
frames (cine-view) are to be supported. Large US cases may be transferred in a lossy-compressed mode,
using the RLE compression method.

A typical US examination case consists of patient/examination information, a set of US Images,
measurement results, ECG data/curves (the latter in case of cardiac studies) and an audio (speech) file.
The PACS system should accept these types of images and multi-media information as a complete
‘acquired image’ set and stores all these images and information objects accordingly.

The PACS system should allow dedicated (color) viewstations to be optimized for reviewing these US
studies, making use of all the US (image) object elements as described above (inclusive speech replay).

In essence, all US images and other information are shown on these viewing stations ‘as last seen’ on the
US modality.

Moreover, these US viewstations should be able to select one or more US image out of a examination
series, add patient demographics and measurements data to it and to store the resultant image, called
photofile image into the systems database for later reference or clinical reporting or teaching purposes.
These photofile images have then become part of the patient’s (history) folder and it should be able to
make a video hardcopy and/or export the photofile image(s) to an external DICOM workstation.

Other PACS-based (B/W) workstations may present these US images ‘as best as possible’; restrictions on
the US image presentation, image manipulations and the speech replay function may apply though.

End note

Assuming the US requirements as stated above are implemented in the system, another Change Case may
be considered to facilitate the system for dedicated IVUS (IntraVascular UltraSound) studies.

IVUS studies are specialized examination procedures, performed on a Vascular X-ray modality with an
add-on US acquisition device. A typical IVUS study consists of a series of XA images and US images
that are correlated in the spacedomain (i.e. the X, Y, and Z coordinates of the two image planes are
transferred with the images). Based on these (XA+US) image data sets, a three-dimensional,
computerized graph of the vessel structure can be reproduced.

The PACS system should be prepared to support the storage of these IVUS examinations, and
accommodate the reproduction.and.display-of the vessel structures on the US (color) viewstations.

242 T. Dolan, R. Weterings, and J.C. Wortmann

Conclusions and Future Work

In this paper the case for stakeholder-driven self-assessment of family architecture by
the family team has been made, and the subsequent need for "how-to" extensions to
the basic ideas and mechanisms promoted by SAAM/ATAM indicated. An outline of
such a method has been presented initially concentrating on interoperability and
extensibility of information system families. A framework for extending this method
to other domains and qualities has also been suggested. Specific attention has been
given to advice and tools needed to implement the method steps and a selection of
these tools has been described with specific attention given to explaining their role in
the method through practical illustration in ongoing architectural assessments of
medical information system families.

The authors experience is that family stakeholders and architects are very receptive
to the mechanisms which help them get some concrete (documented) input on the
often vague-business of family definition and maintenance. The intention is that other
researchers interested in practical applications of family-management will be
motivated to experiment with the initial tools and framework presented herein with a
view to critiquing/enhancing the approach.

Continuing work (and publications) by the authors will concentrate on:

e Reporting complete case-studies of experience with the method - especially
positive/negative experiences or insights, and exposing the method in other
domains

e Communicating other aspects of the method, mentioned in passing in this
workshop paper:

e describing remaining toolkit components (e.g. change-case selection guidelines;

ranking criteria)

e providing more detailed description of the individual steps in the method

e advice on which architectural views and granularity needed for interoperability

and extensibility;

e increasing the application of quantitative metrics in architecture assessment;

e measuring the effectiveness/contribution of the method

References

[1] Bass, L, P. Clements, R. Kazman; Software Architectures in Practice; Addison
Wesley Longman; 1998; ISBN 0-201-19930-0.

[2] Weiss, D.; “Commonality Analysis: A Systematic Process for Defining
Families", Development and Evolution of Software Architectures for Product
Families - Proceedings Second International ESPRIT ARES Workshop, Las
Palmas de Gran Canaria, Spain, Feb. 26-27; Frank van der Linden (Ed.);
Springer-Verlag; Berlin 1998. ISBN 3-540-64916-6

[3] http://www.sei.cmu.edu/plp/index.html

[4] Sanchez, Ron.; “Strategic Product Creation: Managing New Interactions of
Technology, Markets, and Organisations”; European Management Journal,
Voll4-n0:2-April-1996;ppl21-138;-Flsevier Science Ltd.; 1996.

(5]

(6]
(7]

(8]

[9]

[10]

[11]

[12]

[13]

Stakeholder-Centric Assessment of Product Family Architecture 243

Clements, Paul C., Len Bass, Rick Kazman, and Gregory Abowd; Predicting
Software Quality By Architecture-Level Evaluation; Fifth International
Conference on Software Quality; Austin, Texas; 1995.

Simon H.A.; The Sciences of the Artificial; The MIT Press; 1981; ISBN 0-262-
19193-8.

Jacobsen, 1., M.Griss, P.Jonsson; Software Reuse — Architecture, Process, and
Organization for Business Success; ACM press; New York, 1997. ISBN 0-201-
92476-5.

Dolan, T., R. Weterings, J.C. Wortmann; “Stakeholders in Software-system
Families”’; Development and Evolution of Software Architectures for Product
Families - Proceedings Second International ESPRIT ARES Workshop, Las
Palmas de Gran Canaria, Spain, Feb. 26-27; Frank van der Linden (Ed.);
Springer-Verlag; Berlin 1998. ISBN 3-540-64916-6

Kazman, R.,G. Abowd, L. Bass, P. Clements; “Scenario-based analysis of
Software Architecture”; IEEE Software; Vol. 13, No. 6; November 1996; pp
47-57.

Abowd, G., L. Bass, P. Clements, R. Kazman, L. Northrop, A. Zaremski;
Recommended Best Practice for Software Architecture Evaluation; CMU/SEI-
96-TR-025; January 13 1997.

Kazman, R. M.Klein, M.Barbacci, T. Longstaff, H. Lipson, J. Carriere; “The
Architecture Tradeoff analysis Method”; Proceedings of the 4th International
conference on Engineering of Complex Systems ; August 1998.

Kruchten, Philippe B.; “The 4+1 View Model of Architecture”; IEEE
Software; November 1995; pp. 42-50.

Bennett, Douglas. W.; Designing Hard Software : the essential tasks; Manning
Publications Co.; Greenwich

ol Lalu Zyl_ﬂbl

ESAPS - Engineering Software Architectures, Processes,
and Platforms for System Families

Frank van der Linden' and Henk Obbink’

'Philips Medical Systems B.V., Veenpluis 4-6, 5684 PC Best, the Netherlands
*Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, the Netherlands
{frank.van.der.linden, henk.obbink}@philips.com

Abstract. Across Europe 21 companies and research institutions work since
July 1999 together on the Development and Evolution of Software Architec-
tures, Processes and Platforms for System Families in the ITEA project ESAPS.
Based upon earlier and smaller scale experiments in ARES and PRAISE
ESAPS aims to improve the state of practice in European industry with respect
to the Engineering of Architectures, Processes and platforms for system fami-
lies in order to achieve significant higher levels of reuse and improved system
quality.

Introduction

In July 1999 a consortium of 21 companies and research institutions started a project
“Engineering Software Architectures, Processes and Platforms for System Families” —
ESAPS. The project is based upon earlier European experiences within software ar-
chitectures and development for product families, viz. The ESPRIT projects ARES
[1] and PRAISE [2]. ESAPS is set up to exploit in industrial activities the methods
and techniques that are developed in the ESPRIT projects. Based upon our experience
in these projects, we expect that co-operating in complementary domains much prog-
ress can be obtained by otherwise competing partners. ARES has developed advanced
technology for describing and analyzing product variation. PRAISE has developed an
initial system family package, including process, method and variability description
techniques

The idea of a program family is not new and dates back to the seminal papers of
David Parnas and Edsger Dijkstra [9], [5]. However, they do not get much attention
until recently. Nowadays system-families are becoming strategic business assets. On
many markets, the product’s economic life is becoming shorter and shorter. For de-
signing products we have to take into account an increasing number of user groups
(so-called stakeholders) with diverging requirements. In order to survive it is required
to combine and balance the need for a careful engineering approach with the need for
rapid product delivery [11]. We have to handle requirements and architecture so that
varying products can be derived using a common pattern — i.e. a family concept. The
fundamental concept of a system-family is a domain-specific product architecture
based upon a layered set of platforms. The family is constructed within a software en-
gineering process focussed on pervasive reuse.

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 244-252, 2000.
© Springer-Verlag Betlin Heidelberg 2000

Engineering Software Architectures, Processes, and Platforms for System Families 245

The ESAPS project is conceived as a four years project that has been divided into
two phases of two years each. The first phase will deal with the development of the
approach and laboratory scale validation of the individual technologies and technol-
ogy integration framework. The second phase will focus on the integration of the in-
dividually validated technologies and automation of the approach and industrial scale
validation in various domains.

Application Family) / Component System
Engineering Engineering
Feedback & Adaptations

Domain
Market
Expertise
Requirement
! 1 = 1
. L2 £ L2
Product y|Requirements; 5| Product » Product
requirements Analysis ”| Design Coding
_ Application System Engineering
Fig. 1. Product Family Engineering organization
ESAPS Organization

The organization of ESAPS is based upon the Product Family Engineering organiza-

tion, as is shown in figure 1. It combines the two fundamental different approaches to

Product Family Engineering. First, Jacobson et. al. [8] determines three process cate-

gories:

1. application family engineering covering the development of assets usable for the
complete family

2. component system engineering covering the developments of single (platform)
components to be used within system-family members.

3. application system engineering covering the necessary developments to construct
the family members using the components developed in 2.

The system-family methodology, resulting from the PRAISE project and earlier vari-

ous DOD efforts identifies two engineering types:

1. domain engineering in charge of the analysis, design and the management of the
domain assets. (For Reuse focus)

2. application engineering in charge of the development of a new product using the

domain assets (With Reuse focus)

points to put the main emphasis upon. We

246 F. van der Linden and H. Obbink

1. Analysis and modeling of and for system-families. This work package is used
within all three engineering domains, as we need analysis at all levels. However,
this work package has a main focus at Application Family Engineering.

2. Definition and description of system-families. Deals with Domain Design and
Component System Engineering.

3. Derivation of products and evolution of system-families. Deals with Application
System Engineering.

4. Validation of the technologies developed in work packages 1-3. Applies the ap-
proaches of the other work packages in large industrial system families.

5. Dissemination. In order to maximize the synergy project-wide intensive workshops
are planned to take place each V2 year.

We start with an overview of the ESAPS project’s technical basis, starting with the

goals. Three main subjects: Analysis, Definition and Evolution of system-families

will be treated separately.

ESAPS Goals

The ESAPS project aims to provide an enhanced system-family approach and en-

hanced domain specific platforms for the application domains of the partners. ESAPS

is designed to enable a major paradigm shift in the existing processes, methods, plat-

forms and tools and comprises the following changes; see figure 2:

1. From state of the art object technology to component technology for complex em-
bedded systems.

This will allow to compose systems from available components, both in-house and
COTS.

2. The transition to strategic pervasive domain specific platform based reuse. This
enables the transition from opportunistic reuse to strategic reuse, based upon mar-
keting demands instead of technical possibilities, using a platform approach.

These changes are the basis to be able to move from engineering single systems to the

engineering of multiple systems or system-families, leading a large commercial diver-

sity with a relative small technical diversity.

The ESAPS results are targeted to be fivefold:

1. Enhanced system-family engineering processes

2. Enhanced system-family engineering methods and tools

3. Enhanced component based domain specific platforms for system-families

4. Requirements for engineering tool suppliers to adapt their tools to comply with
system-family engineering needs. Resulting from 1 and 2.

5. Requirements for generic and domain-specific middleware suppliers. Resulting
from 3.

ESAPS Technical Basis

A system-family is defined as a group of systems sharing a common, managed set of
features that satisfy core needs of a scoped domain. The idea behind a system-family
approach is to build a new system or application from a common set of assets (domain
model, reference architecture, components, platform) defined from earlier developed

Engineering Software Architectures, Processes, and Platforms for System Families 247

systems belonging to the same line. A software asset is a description of a partial solu-
tion. It might be a component, known requirements or design elements that an engi-
neer uses to build or modify a software product.

A

Domain | Reuse level

pervasive
reuse

Architected
reuse

Managed
reuse

Planned
reuse

| nf ormal
code reuse

No
reuse

Development paradigms

Structured Object-Oriented Component -based Agent-based
programming Development Development Development ??

Fig. 2. Direction of ESAPS

A is well known the Business, Organization, Process & Architecture (BOPA) have
mutual influences. A change in one of them will have a result in a change in at least
one of the other aspects and often in all of them.

ESAPS has a focus to architecture and process. However, we are aware that we
cannot deny the other aspects therefore they are investigated on a small scale within
ESAPS. The business aspect deals with the issues of
How do we earn money,

Which kind of product do we make

What is the scope of the domain

Who are the stakeholders that have requirements
Product roll-out scheme

The organization aspect deals with the issues of
How are we organized

What are the different roles we recognize

What are the products that are used for communication
What are the tools we use

Physical distribution of people

The main concern of process aspect is:

e Who is doing what

Who is responsible

What do the products look like

Acceptance process.of artifacts

248 F. van der Linden and H. Obbink

e Technical support

Finally the architecture aspect deals with

e The distribution of the requirements over the artifacts
e The rules that the artifacts have to obey

e The acceptance of the artifacts

e The relationship between the artifacts

In the next sections we will go into the details of the three main work packages of
ESAPS.

Analysis of, and Modeling for System-Families

The first topic deals with analysis. Because of the importance of architectural deci-
sions, they have to be carefully modeled and analyzed. If problems are found early in
the software life cycle, they are easier to correct. Software quality cannot be appended
late in a project; it must be inherent from the beginning.

Within Application Family Engineering the main subjects are the analysis of the
problem-domain and the solution-domain. The problem domain is addressed by do-
main analysis and modeling, focussing on the problem domain in general. As a spe-
cific topic we deal with aspect analysis and modeling, focussing on the problem do-
main qualities that have to be satisfied. We consider both scenario based and model
based analysis techniques. Scenario based techniques are particularly suitable for re-
views while modeling based techniques are better at predicting quantitative estimates
on quality attributes.

The solution domain is addressed by Architectural analysis and modeling, focus-
sing on the development artifacts and the solution domain. Note that the latter topic
also is connected to Component System Engineering and Application System Engi-
neering via the analysis of the produced platforms, components and systems. Reverse
architecting techniques can be used to assess the value of a legacy system, in checking
whether the current development follows the architectural rules or in understanding
the suitability of candidates when acquiring a large software system.

The domain is the abstract space where the families live. The platform is the col-
lection of all components and interfaces that are used in all, or most, products in the
family. Within domain analysis, methods have to be developed for identifying and
modeling those assets that are common to all family members, and those assets that
belong to specific family members only.

Besides the functional aspects of a system family there are also non-functional at-
tributes or quality aspects of the systems to be developed. The book [3] distinguishes
between runtime discernible, not run time discernible, inherent and business qualities.
ESAPS uses a similar but slightly adapted approach. As can already be deducted from
the different quality classes, the different qualities serve the needs of distinct
stakeholders. Each of these qualities and interfaces are often very important from the
view of a particular stakeholder.

Specific analysis and design techniques have to be developed and integrated to deal
with the different qualities. Solutions may lie in (run-time, or development-time) in-
frastructure support, in the design of specific interfaces, in the design of specific
services or a combination of all. Moreover, the qualities may be connected to specific
architecture views [6],[10].

Engineering Software Architectures, Processes, and Platforms for System Families 249

Definition and Description of System-Families

Designing system families requires a way of designing the commonality and variabil-
ity in such a way that during the product engineering phase variants can be imple-
mented efficiently. The system family is captured in the system family architecture,
which in turn is based upon a reference architecture. The reference architecture com-
prises the main architectural information of the complete family. It is an intermediate
between the problem space, encapsulated in the domain model, and the solution
space. The reference architecture represents the earliest design decisions that are the
most difficult to change, the most critical to get right and addresses most of the aspect
issues such as performance, reliability, modifiability and security. Therefore the refer-
ence architecture is an important system-family artifact.

It defines the components (mandatory, optional, alternative), component interrela-
tionships, constraints, and guidelines for use and evolution in building systems in the
system family. Consequently, the reference architecture must support common capa-
bilities identified in the specification, the commonality, and the potential variability
within the system family. The system family scoping, defined by the business aspect,
is essential for the development of a reference architecture since it defines the bounds
for systems that will constitute the system family as well as the goals to be achieved
and targeted by system family development.

The system family architecture implements the reference architecture by providing
specific technical solutions. The platform and components are important artifacts in a
system family architecture based upon a reference architecture. They are part of the
solution space. They use heterogeneous solution technology (as, e.g., CORBA,
DCOM, Beans) using the necessary integration means (middle-ware, orbs, bridge
technology, wrapping techniques). In this context, middle-ware provides the infra-
structure for high level co-operation between components including information ex-
change.

In order to support the architecture definition process we need to investigate sys-
tem family oriented component development techniques addressing requirements en-
gineering, design engineering, component management, integration testing and com-
ponent evolution. In particular methods for semantic interface descriptions and related
by contract based development approach will be provided.

Within this work package we also deal with the Component System Engineering,
involving the platform implementation. An important task is to investigate ways to
create and validate platform components.

Derivation of Products and Evolution of System-Family Assets

Within this work package we deal with several aspects of Application System Engi-
neering. It deals with the questions how to create and validate products, built upon the
platform. Creating new products is a main source of system-family evolution. How-
ever, the separate system artifacts at all levels of abstraction, evolve separately into
improved versions. This is a second source of system evolution. In order to be able to
deal effective and error-free with evolution we need to keep track of the connections

250 F. van der Linden and H. Obbink

between requirements and artifacts. Therefore advanced requirements modeling and
traceability techniques are needed.

Deriving a new member of the family, defined by a set of new requirements, means
to:

e Identify those requirements that are common to all product variants and those
which belong to specific variants.

e Select and adjust those parts of the system family architecture that can be reused in
the new variant.

e To document and reuse the architectural decisions at the variation points which
have to be taken to complete the variant architecture.

e Identify and possibly adjust the components along with an adequate configuration
that can be used in the new product.

Capturing, documenting and maintaining the traceability information is labor and cost

intensive. Traceability should thus be adjusted to product family specific needs and as

far as possible automated.

Change to a product concerns modification related to defects or new requirements.
It is necessary to analyze the affected assets and determine whether changes have im-
pact on them. In general, we need to predict the properties of variants before actually
building them. Thus we need to be able to determine impacts of change and how
changes propagate.

Change may influence several system artifacts at different levels of abstractions
such as components, architectural models, and requirements. Changing one artifact
may require the adaptation of dependent artifacts, again at different abstraction levels.
This dependency relationship refers to interactive change impact propagation. Change
impact propagation is illustrated by references to potential changes required.

Product creation is based upon a selection of the specific functional or quality re-
quirements. These selections determine the components that will form the application
system, the parameters (properties, attributes) for instances of generic components
and the interfaces that support the quality aspects. Based upon the selection the ex-
ecutable system has to be built. In [8] uses a process covering requirements capture,
robustness analysis, design, implementation, testing and packaging the system.

Configuration may be dynamic at initialization and/or run-time. Any choice for the
moment of configuration influences the possibilities of customizing, upgrading or
adapting the components, architectures, and requirements.

Selection has to be performed efficiently and knowingly. In order to be able to do
so, meta-information and version information about the components and parameters
has to be available. Product versioning is often orthogonal to product variants. Ver-
sioning across different product variants has to be modeled and performed carefully.

Validation

All methods and techniques are validated on large case studies within the project.

These case studies involve:

1. Communication Domain: Mobile phone families and Switch Maintenance families

2. Medical Domain, Image acquisition and management system families and Picture
Information Management Systems (PACS)

Engineering Software Architectures, Processes, and Platforms for System Families 251

. Utilities systems

. Air supervision systems

. Car systems, Driver Information Systems and Automotive systems

. Network servers for office equipment and web controlled embedded system archi-
tecture

7. Banking domain

8. Multimedia domain

As ESAPS cover a broad range of methods and techniques, each validation concerns

only a small part of the complete effort. Each industrial partner defines for which as-

pects they want to measure improvement. Within ESAPS we provide templates to

make experiment plans and document experiment results.

ANk~ W

Summary and Conclusions

Many European industries recognize that a product family approach will be cost ef-
fective in future. ESAPS is a large European project, with the focus to the architecture
and the development process of software for product families.

ESAPS is built upon earlier experiences within Europe and the USA. A collection
of important topics is identified and these topics will be investigated within the proj-
ect. In parallel validation is performed within a large range of industries to evaluate
the work done within ESAPS. At the end of ESAPS we hope to have a collection of
new, or refined techniques, approaches and methods that can be used in the develop-
ment of software for product families.

Acknowledgements

The ESAPS project is ITEA project 99005 in the European Eureka X! 2023 Pro-
gramme. The programme has a focus on information technology improvements.
The following ESAPS partners all made contributions to be able to give this over-
view:
The Netherlands:
e FEindhoven Embedded Systems Institute (EESI)
e Software Engineering Research Centre (SERC)
Finland:
e Nokia Research Center
e Helsinki University of Technology
Sweden:
e University of Karlskrona/Ronneby
e AXIS Communications AB
e Combitech Software AB
Germany
e Siemens-ZT
Siemens-HS
Robert Bosch GmbH
Fraunhofer IESE

252 F.van der Linden and H. Obbink

Market Maker
Universitit Essen

France:

Thomson-CSF
Alcatel Corporate Research Center
INRIA Rennes

Spain:

Sainco

European Software Institute (ESI)

Unién Fenosa International Software Factory
Universidad Politécnica de Madrid (UPM)

References

(1]

(2]
(3]

[4]
(5]
(6]
[7]
(8]
[9]

ARES Web Sites, Available at Vienna <http://hpv17.infosys.tuwien.ac.at/AR-
ES/> and Madrid <http://sirio.dit.upm.es/~ares/>

PRAISE Web Site. Available at <http://www.esi.es/Projects/Reuse/PRAISE/>.
Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 1998,
Addison Wesley: ISBN 0-201-19930-0

Paul Clements, Linda Northrop, A Framework for Software Product Line Prac-
tice, Version 1.0, September 1998, SEI Carnegie-Mellon

E.W. Dijkstra, Notes on structured programming, O.J. Dahl, E.W. Dijkstra,
C.AR. Hoare, eds., Academic Press, London 1972.

Philippe Kruchten, The 4+1 View Model of Architecture, IEEE Software pp. 42-
50, November 1995.

Marc H. Meyer, et al, The Power of Product Platforms: Building Value and Cost
Leadership, 1997, Alvin Free Press: ISBN 0684825805

Ivar Jacobson, et al; Software Reuse: Architecture Process and Organization for
Business Success, 1997, ACM Press New York: ISBN 0-201-92476-5

D. L. Parnas On the Design and Development of Program Families, Transactions
on Software Engineering, SE-2:1-9, March 1976.

[10] Dilip Soni, Robert L. Nord, Christine Hofmeister, Software Architecture in In-

dustrial Applications, Proceedings ICSE' 95, pp. 196-207, 1995.

[11]David M. Weiss and Chi Tau Robert Lai: Software Product-Line Engineering: A

Family Based Software Development Process. Addison-Wesley 1999.

ol Lalu Zyl_ﬂbl

Product-Line Engineering

Paul Clements

Software engineering Institute, Carnegy Mellon University
Pittsburg, PA 15213, USA
clements@sei.cmu.edu

In the United States, product line activities can be divided between technology
consumers and technology providers. Consumers are the practitioners, the people in
companies who are turning out product families using common architectures,
components, and other resources. Technology providers in the area of product lines
produce either methods or tools, or sometimes both.

Technology providers representative of those providing methodological
contributions include Lucent Technologies and the Software Engineering Institute.

Lucent is developing, using, and helping others to use a method called the FAST
Process. FAST stands for Family-oriented Abstraction, Specification, and
Translation, and it is a process for defining families and developing environments for
generating family members. The steps of FAST involve finding abstractions common
to the family, defining a process for producing family members, designing a language
to specify family members, and then generating software for family members from
specifications written in the family-specific language. FAST features an emphasis on
families of systems, includes an explicit economic model for evaluating the economic
feasibility of a particular family, explicit scoping to define what is in and out of the
family, and rapid production of family members.

At Carnegie Mellon University’s Software Engineering Institute, the Product Line
Systems Program is one of the six technology programs currently under way. Its
mission is to help organizations transition to a software product line approach and
build a community of product line researchers and practitioners. Its work is based on
the realization that technology alone is not enough to solve the problems, but that
organizational approaches are required as well. Its primary work product is “A
Framework for Product Line Practice,” which defines a set of about 28 product-line-
relevant practice areas in which product line organizations should be competent. The
framework divides practice areas into three broad areas: those relating to software
engineering, technical management, and organizational management. Each practice
area is defined in terms of how it should be applied in the context of a product line
(although most of the practice areas are in fact activities that are applied in generic
form to any software development effort). Software engineering practice areas
include Understanding Relevant Domains; Mining Existing Assets; Architecture
Exploration and Definition; Architecture Evaluation; COTS Utilization; Software
System Integration; Component Development; Testing; and Requirements,
Elicitation, Analysis, and Management. Technical management practice areas are
Data Collection, Metrics, and Tracking; Product Line Scoping; Configuration
Management; Technical Risk Management; Process Modeling and Implementation;
Planning and Tracking; Make/Buy/Mine/Outsource Analysis; and Tool Support.
Finally, organizational management practice areas are Achieving the Right
Organizational __Structure; __Operations; = Training; Developing/Implementing
Acquisition Strategy; Launching and Institutionalizing a Product Line; Building and

H. van der Linden (Ed.): IW-SAPE-3, LNCS'1951, pp. 253-254, 2000.
© Springer-Verlag Betlin Heidelberg 2000

254 P. Clements

Communicating a Business Case; Funding; Market Analysis; Customer Interface
Management; Technology Forecasting; and Organizational Risk Management. The
SEI has also run a series 8 small focused product line practice workshops, written a
series of product line industrial case studies, and this August will organize and host
the first international software product line conference in Denver, Colorado.

Technology providers on the tool side are exemplified by the Microelectronics and
Computer Technology Consortium (MCC). Here, product line architecture research
is being carried out in the Software and Systems Engineering Productivity (SSEP)
project, sponsored by shareholder companies including NCR, Raytheon, Motorola,
Kodak, and TRW. MCC in general has a technology rather than process focus; in
software engineering technology this tends to get embodied in tools and/or
frameworks. The central theme of SSEP project has evolved to be something like “an
exploration of the idea of architecture as organizing product lines.” As a result, this
has led to a structural rather then behavioral bias re architecture, with an emphasis on
explicit linkage or correlation between architecture and other artifacts. The project
now has a number of prototype tools that they are just now beginning to try (with
participant companies) to use for real architectures. A key present activity is a joint
case study with NCR to explore explicit representation of variability in architecture.

In addition to these large-scale initiatives, the current rich environment of start-up
companies is providing some product-line-related technology, although little product
line research by that name is being done. But many companies are doing it because
they have to; they are simply not thinking of it as research. However, the
entrepreneurial nature of small companies tends to make their results difficult to
transition to the community at large, and difficult to scale up to meet industrial needs.

Ol Ll Zyl_i.lbl

America, Pierre
Bandinelli, Sergio
Bayer, Joachim
Bockle, Giinter
Bosch, Jan
Buttle, Darren
Cerdn, Rodrigo
Clements, Paul
Cook, T.W.

Dolan, Tom
Dueiias, Juan C.

Egyed, Alexander
Flege, Oliver
Gacek, Cristina
Jepsen, Hans Peter

Kinsild, Kari
Kuusela, Juha

van der Linden, Frank

Maccari, Alessandro
McDermid, John
Medvidovic, Nenad
Mehta, Nikunj
Mellado, Julio

Author Index

199 Nielsen, Flemming
Nord, Robert L.

76

210 Obbink, Henk

63 van Ommering, Rob

94, 117, 146, 168

217 Perry, Dewayne E.
de la Puente, Juan A.

158

116, 253 Ran, Alexander

82 Romera, Ana

225 Sagardui Mendieta, Goiuria

53, 158 Schank, Michael
Schmid, Klaus

96 Sierra, Manuel
Stephenson, Alan

210 Stuart, Douglas
Sull, Wonhee

210 Svahnberg, Mikael

30 Tuovinen, Antti-Peka

135 Vehkomaiki, Tuomo

94
Weiss, David M.

1, 244 Weterings, Ruud

van Wijgerden, Jan

107 Wijnstra, Jan Gerben

217 Wortmann, J.C.

96

96

53

30
19

244
187

39
158

168
53

76
65
65
53
217
82
82
146

107
135
184
225
199

225

	Frontmatter
	Introduction
	Product Family Practice
	Component Frameworks for a Medical Imaging Product Family
	Meeting the Product Line Goals for an Embedded Real-Time System
	A Two-Part Architectural Model as Basis for Frequency Converter Product Families
	A Product Line Architecture for a Network Product
	Railway-Control Product Families: The Alcatel TAS Platform Experience

	Business
	Discussion Report ``Business'' Session
	PuLSE-BEAT --- A Decision Support Tool for Scoping Product Lines
	Domain Potential Analysis: Calling the Attention on Business Issues of Product-Lines
	Dependency Navigation in Product Lines Using XML

	Product Family Concepts
	Summary of Product Family Concepts Session
	Software Connectors and Refinement in Family Architectures
	System Family Architectures: Current Challenges at Nokia

	Product Family Methods
	Product Family Methods
	Organizing for Software Product Lines
	A Comparison of Software Product Family Process Frameworks
	Issues Concerning Variability in Software Product Lines
	A First Assessment of Development Processes with Respect to Product Lines and Component Based Development

	Evolution
	Evolution of Software Product Families

	Product Family Techniques
	Product Family Techniques Session
	Beyond Product Families: Building a Product Population?
	Requirements Modeling for Families of Complex Systems
	Creating Product Line Architectures
	Extending Commonality Analysis for Embedded Control System Families
	Stakeholder-Centric Assessment of Product Family Architecture

	Surveys
	ESAPS -- Engineering Software Architectures, Processes and Platforms for System Families
	Product-Line Engineering

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

